Repositorio Académico UOH

Bibliotecas Universidad de O'Higgins



Mostrar el registro sencillo del ítem

dc.contributor.author Pérez-Aros, P
dc.contributor.author Thibault, L
dc.date.accessioned 2024-01-17T15:56:17Z
dc.date.available 2024-01-17T15:56:17Z
dc.date.issued 2019
dc.identifier.uri https://repositorio.uoh.cl/handle/611/977
dc.description.abstract We prove that if X is a complete locally convex space and f : X -> R boolean OR {+infinity} is a function such that f - x* attains its minimum for every x* is an element of U, where U is an open set with respect to the Mackey topology in X* , then for every gamma is an element of R and x* is an element of U the set {x is an element of X: f (x) - (x*, x) <= gamma} is relatively weakly compact. This result corresponds to an extension of Theorem 2.4 in a recent paper of J. Saint Raymond [Mediterr. J. Math. 10(2) (2013) 927-940]. Directional James compactness theorems are also derived.
dc.description.sponsorship CONICYT-PCHA doctorado Nacional
dc.subject Convex functions
dc.subject conjugate functions
dc.subject inf-convolution
dc.subject epi-pointed functions
dc.subject weak compactness
dc.subject inf-compact functions
dc.title Weak Compactness of Sublevel Sets in Complete Locally Convex Spaces
dc.type Artículo
uoh.revista JOURNAL OF CONVEX ANALYSIS
dc.citation.volume 26
dc.citation.issue 3
dc.identifier.orcid Perez-Aros, Pedro/0000-0002-8756-3011
uoh.indizacion Web of Science


Ficheros en el ítem

Ficheros Tamaño Formato Ver

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem


Colecciones


Archivos

Artículos

Tesis

Videos


Cuartiles