Mostrar el registro sencillo del ítem
dc.contributor.author | Mischler, S | |
dc.contributor.author | Quiñinao, C | |
dc.contributor.author | Weng, Q | |
dc.date.accessioned | 2024-01-17T15:56:17Z | |
dc.date.available | 2024-01-17T15:56:17Z | |
dc.date.issued | 2018 | |
dc.identifier.uri | https://repositorio.uoh.cl/handle/611/976 | |
dc.description.abstract | For large fully connected neuron networks, we study the dynamics of homogenous assemblies of interacting neurons described by time elapsed models. Under general assumptions on the firing rate which include the ones made in previous works (Pakdaman et al. in Nonlinearity 23(1):55-75, 2010; SIAM J Appl Math 73(3):1260-1279, 2013, Mischler and Weng in Acta Appl Math, 2015), we establish accurate estimate on the long time behavior of the solutions in the weak and the strong connectivity regime both in the case with and without delay. Our results improve (Pakdaman et al. 2010, 2013) where a less accurate estimate was established and Mischler and Weng (2015) where only smooth firing rates were considered. Our approach combines several arguments introduced in the above previous works as well as a slightly refined version of the Weyl's and spectral mapping theorems presented in Voigt (Monatsh Math 90(2):153-161, 1980) and Mischler and Scher (Ann Inst H Poincare Anal Non Lineaire 33(3):849-898, 2016). | |
dc.description.sponsorship | French ANR blanche project Kibord(Agence Nationale de la Recherche (ANR)) | |
dc.description.sponsorship | CONICYT(Comision Nacional de Investigacion Cientifica y Tecnologica (CONICYT)) | |
dc.description.sponsorship | CEREMADE at University Paris-Dauphine | |
dc.relation.uri | http://dx.doi.org/10.1007/s10955-018-2122-x | |
dc.subject | Neuron networks | |
dc.subject | Time elapsed dynamics | |
dc.subject | Semigroup | |
dc.subject | Spectral analysis | |
dc.subject | Weak connectivity | |
dc.subject | Strong connectivity | |
dc.subject | Exponential asymptotic stability | |
dc.title | Weak and Strong Connectivity Regimes for a General Time Elapsed Neuron Network Model | |
dc.type | Artículo | |
uoh.revista | JOURNAL OF STATISTICAL PHYSICS | |
dc.identifier.doi | 10.1007/s10955-018-2122-x | |
dc.citation.volume | 173 | |
dc.citation.issue | 1 | |
dc.identifier.orcid | QUININAO, Cristobal/0000-0003-2934-6825 | |
uoh.indizacion | Web of Science |
Ficheros | Tamaño | Formato | Ver |
---|---|---|---|
No hay ficheros asociados a este ítem. |
El Repositorio Académico de la Universidad de O'Higgins es una plataforma de difusión documental que recopila, respalda y difunde la producción científica y académica de nuestra casa de estudios. En su interfaz, se integran diferentes tipos de documentos, tales como, libros, artículos académicos, investigaciones, videos, entre otros, los cuales pueden ser difundidos y utilizados con fines académicos y de investigación.
Los recursos contenidos en el repositorio son de libre acceso en texto completo, a excepción de aquellos que por restricciones propias del Derecho de Autor o por petición expresa de la autoría principal, no pueden ser difundidos en la condición mencionada.