Repositorio Académico UOH

Bibliotecas Universidad de O'Higgins



Mostrar el registro sencillo del ítem

dc.contributor.author Correa, R
dc.contributor.author Hantoute, A
dc.contributor.author López, MA
dc.date.accessioned 2024-01-17T15:56:13Z
dc.date.available 2024-01-17T15:56:13Z
dc.date.issued 2018
dc.identifier.uri https://repositorio.uoh.cl/handle/611/963
dc.description.abstract We generalize and improve the original characterization given by Valadier [19, Theorem 1] of the subdifferential of the pointwise supremum of convex functions, involving the subdifferentials of the data functions at nearby points. We remove the continuity assumption made in that work and obtain a general formula for such a subdifferential. In particular, when the supremum is continuous at some point of its domain, but not necessarily at the reference point, we get a simpler version which gives rise to the Valadier formula. Our starting result is the characterization given in [11, Theorem 4], which uses the epsilon-subdifferential at the reference point.
dc.description.sponsorship CONICYT(Comision Nacional de Investigacion Cientifica y Tecnologica (CONICYT))
dc.description.sponsorship Fondecyt(Comision Nacional de Investigacion Cientifica y Tecnologica (CONICYT)CONICYT FONDECYT)
dc.description.sponsorship MINECO of Spain(Spanish Government)
dc.description.sponsorship FEDER of EU(European Union (EU))
dc.description.sponsorship Australian Research Council(Australian Research Council)
dc.subject Pointwise supremum function
dc.subject convex functions
dc.subject Fenchel subdifferential
dc.subject Valadier-like formulas
dc.title Valadier-like Formulas for the Supremum Function I
dc.type Artículo
uoh.revista JOURNAL OF CONVEX ANALYSIS
dc.citation.volume 25
dc.citation.issue 4
uoh.indizacion Web of Science


Ficheros en el ítem

Ficheros Tamaño Formato Ver

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem


Colecciones


Archivos

Artículos

Tesis

Videos


Cuartiles