Mostrar el registro sencillo del ítem
dc.contributor.author | Sun, TP | |
dc.contributor.author | Alvarez-Novoa, F | |
dc.contributor.author | Andrade, K | |
dc.contributor.author | Gutiérrez, P | |
dc.contributor.author | Gordillo, L | |
dc.contributor.author | Cheng, X | |
dc.date.accessioned | 2024-01-17T15:55:45Z | |
dc.date.available | 2024-01-17T15:55:45Z | |
dc.date.issued | 2022 | |
dc.identifier.uri | https://repositorio.uoh.cl/handle/611/866 | |
dc.description.abstract | Drop impact causes severe surface erosion, dictating many important natural, environmental and engineering processes and calling for substantial prevention and preservation efforts. Nevertheless, despite extensive studies on the kinematic features of impacting drops over the last two decades, the dynamic process that leads to the drop-impact erosion is still far from clear. Here, we develop a method of high-speed stress microscopy, which measures the key dynamic properties of drop impact responsible for erosion, i.e., the shear stress and pressure distributions of impacting drops, with unprecedented spatiotemporal resolutions. Our experiments reveal the fast propagation of self-similar noncentral stress maxima underneath impacting drops and quantify the shear force on impacted substrates. Moreover, we examine the deformation of elastic substrates under impact and uncover impact-induced surface shock waves. Our study opens the door for quantitative measurements of the impact stress of liquid drops and sheds light on the origin of low-speed drop-impact erosion. The dynamic process behind the low-speed drop-impact erosion remains challenging to understand. Cheng et al. develop a method of high-speed microscopy, revealing the fast propagation of self-similar stress maxima underneath impacting drops and the formation of surface waves on impacted substrates. | |
dc.description.sponsorship | US National Science Foundation(National Science Foundation (NSF)) | |
dc.description.sponsorship | ACS Petroleum Research Fund(American Chemical Society) | |
dc.description.sponsorship | PPG fellowship via UMN IPRIME | |
dc.description.sponsorship | ANID/CONICYT Fondecyt Iniciacion | |
dc.description.sponsorship | Direct For Mathematical & Physical Scien | |
dc.description.sponsorship | Division Of Materials Research(National Science Foundation (NSF)NSF - Directorate for Mathematical & Physical Sciences (MPS)) | |
dc.relation.uri | http://dx.doi.org/10.1038/s41467-022-29345-x | |
dc.title | Stress distribution and surface shock wave of drop impact | |
dc.type | Artículo | |
uoh.revista | NATURE COMMUNICATIONS | |
dc.identifier.doi | 10.1038/s41467-022-29345-x | |
dc.citation.volume | 13 | |
dc.citation.issue | 1 | |
dc.identifier.orcid | GORDILLO, Leonardo/0000-0002-9516-1346 | |
dc.identifier.orcid | Gutiérrez, Pablo/0000-0002-4673-1656 | |
dc.identifier.orcid | Cheng, Xiang/0000-0002-2759-764X | |
dc.identifier.orcid | Andrade Corbalan, Klebbert/0009-0003-2503-1639 | |
uoh.indizacion | Web of Science |
Ficheros | Tamaño | Formato | Ver |
---|---|---|---|
No hay ficheros asociados a este ítem. |
El Repositorio Académico de la Universidad de O'Higgins es una plataforma de difusión documental que recopila, respalda y difunde la producción científica y académica de nuestra casa de estudios. En su interfaz, se integran diferentes tipos de documentos, tales como, libros, artículos académicos, investigaciones, videos, entre otros, los cuales pueden ser difundidos y utilizados con fines académicos y de investigación.
Los recursos contenidos en el repositorio son de libre acceso en texto completo, a excepción de aquellos que por restricciones propias del Derecho de Autor o por petición expresa de la autoría principal, no pueden ser difundidos en la condición mencionada.