Repositorio Académico UOH

Bibliotecas Universidad de O'Higgins



Mostrar el registro sencillo del ítem

dc.contributor.author Adly, S
dc.contributor.author Haddad, T
dc.contributor.author Le, BK
dc.date.accessioned 2024-01-17T15:55:42Z
dc.date.available 2024-01-17T15:55:42Z
dc.date.issued 2019
dc.identifier.uri https://repositorio.uoh.cl/handle/611/855
dc.description.abstract This paper deals with the existence and uniqueness of solutions for a class of state-dependent sweeping processes with constrained velocity in Hilbert spaces without using any compactness assumption, which is known to be an open problem. To overcome the difficulty, we introduce a new notion called hypomonotonicity-like of the normal cone to the moving set, which is satisfied by many important cases. Combining this latter notion with an adapted Moreau's catching-up algorithm and a Cauchy technique, we obtain the strong convergence of approximate solutions to the unique solution, which is a fundamental property. Using standard tools from convex analysis, we show the equivalence between this implicit state-dependent sweeping processes and quasistatic evolution quasi-variational inequalities. As an application, we study the state-dependent quasistatic frictional contact problem involving viscoelastic materials with short memory in contact mechanics.
dc.relation.uri http://dx.doi.org/10.1007/s10957-018-1427-x
dc.subject Moreau's sweeping process
dc.subject Evolution variational inequalities
dc.subject Unilateral constraints
dc.subject Quasistatic frictional contact problems
dc.title State-Dependent Implicit Sweeping Process in the Framework of Quasistatic Evolution Quasi-Variational Inequalities
dc.type Artículo
uoh.revista JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS
dc.identifier.doi 10.1007/s10957-018-1427-x
dc.citation.volume 182
dc.citation.issue 2
dc.identifier.orcid Le, Ba Khiet/0000-0003-3894-4173
dc.identifier.orcid Haddad, Tahar/0000-0001-6899-8776
uoh.indizacion Web of Science


Ficheros en el ítem

Ficheros Tamaño Formato Ver

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem


Colecciones


Archivos

Artículos

Tesis

Videos


Cuartiles