Repositorio Académico UOH

Bibliotecas Universidad de O'Higgins



Mostrar el registro sencillo del ítem

dc.contributor.author Rozas, H
dc.contributor.author Muñoz-Carpintero, D
dc.contributor.author Saéz, D
dc.contributor.author Orchard, ME
dc.date.accessioned 2024-01-17T15:55:39Z
dc.date.available 2024-01-17T15:55:39Z
dc.date.issued 2021
dc.identifier.uri https://repositorio.uoh.cl/handle/611/846
dc.description.abstract The adoption of Electric Vehicles (EVs) has substantially increased during the last decade, creating the need for customized EV-oriented routing strategies capable of using the enormous amount of historical, and real-time, traffic data that is collected through Intelligent Transport Systems (ITSs). Existing EV routing algorithms, however, concentrate mostly on the usage historical data to compute offline optimal paths, whereas the use of real-time traffic information to compute en-route path updates is still an almost unexplored topic; mainly due to its inherent computational challenges. This research effort proposes a Prognostic Decision Making (PDM) strategy to solve in real-time the Electric Vehicle Dynamic Stochastic Shortest Path Problem (EV-DSSPP); aiming at the simultaneous utilization of historical and real-time traffic data. Factors such as recurring and non-recurring traffic congestion, elevation, velocity and EV's parameters are incorporated into the decision-making process. The proposed strategy has two hierarchical functional layers. The lower layer consists of a fast-computing routing algorithm that, by construction, guarantees a real-time execution. The higher layer organizes the periodic enroute execution of the first layer to compute en-route path updates during a trip. This strategy can hence serve as an expert router that works jointly with an ITS to assist EV drivers on route. The proposal is validated through a simulation study based on real-world traffic data collected in Santiago, Chile. The results show that periodic en-route path updates can generate a reduction in both travel time and energy consumption, which evidences the benefits of incorporating real-time traffic information into the EV-routing problems.
dc.description.sponsorship FONDECYT Chile(Comision Nacional de Investigacion Cientifica y Tecnologica (CONICYT)CONICYT FONDECYT)
dc.description.sponsorship Advanced Center for Electrical and Electronic Engineering, AC3E, ANID
dc.description.sponsorship CONICYT PIA/BASAL(Comision Nacional de Investigacion Cientifica y Tecnologica (CONICYT)CONICYT PIA/BASAL)
dc.description.sponsorship CONICYT-PFCHA/MagisterNacional/2018
dc.description.sponsorship CONICYT - FONDECYT Postdoctorado(Comision Nacional de Investigacion Cientifica y Tecnologica (CONICYT)CONICYT FONDECYT)
dc.relation.uri http://dx.doi.org/10.1016/j.eswa.2021.115489
dc.subject Dynamic and stochastic shortest path problem
dc.subject Electric vehicles
dc.subject Real-time decision making
dc.title Solving in real-time the dynamic and stochastic shortest path problem for electric vehicles by a prognostic decision making strategy
dc.type Artículo
uoh.revista EXPERT SYSTEMS WITH APPLICATIONS
dc.identifier.doi 10.1016/j.eswa.2021.115489
dc.citation.volume 184
dc.identifier.orcid Orchard, Marcos/0000-0003-4778-2719
dc.identifier.orcid Munoz-Carpintero, Diego/0000-0003-1194-4042
dc.identifier.orcid Saez, Doris/0000-0001-8029-9871
uoh.indizacion Web of Science


Ficheros en el ítem

Ficheros Tamaño Formato Ver

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem


Colecciones


Archivos

Artículos

Tesis

Videos


Cuartiles