Repositorio Académico UOH

Bibliotecas Universidad de O'Higgins



Mostrar el registro sencillo del ítem

dc.contributor.author Correa, R
dc.contributor.author Salas, D
dc.contributor.author Thibault, L
dc.date.accessioned 2024-01-17T15:55:36Z
dc.date.available 2024-01-17T15:55:36Z
dc.date.issued 2018
dc.identifier.uri https://repositorio.uoh.cl/handle/611/840
dc.description.abstract Based on a fundamental work of R. B. Holmes from 1973, we study differentiability properties of the metric projection onto prox-regular sets. We show that if the set is a nonconvex body with a Cp+1-smooth boundary, then the projection is C-p-smooth near suitable open truncated normal rays, which are determined only by the function of prox-regularity. A local version of the same result is established as well, namely, when the smoothness of the boundary and the prox-regularity of the set are assumed only near a fixed point. Finally, similar results are derived when the prox-regular set is itself a Cp+1-submanifold. (C) 2016 Elsevier Inc. All rights reserved.
dc.description.sponsorship ECOS/CONICYT project
dc.relation.uri http://dx.doi.org/10.1016/j.jmaa.2016.08.064
dc.subject Distance function
dc.subject Metric projection
dc.subject Nonconvex body
dc.subject Prox-regular set
dc.subject Normal cone
dc.subject Submanifold
dc.title Smoothness of the metric projection onto nonconvex bodies in Hilbert spaces
dc.type Artículo
uoh.revista JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS
dc.identifier.doi 10.1016/j.jmaa.2016.08.064
dc.citation.volume 457
dc.citation.issue 2
uoh.indizacion Web of Science


Ficheros en el ítem

Ficheros Tamaño Formato Ver

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem


Colecciones


Archivos

Artículos

Tesis

Videos


Cuartiles