Repositorio Académico UOH

Bibliotecas Universidad de O'Higgins



Mostrar el registro sencillo del ítem

dc.contributor.author Seeger, A
dc.contributor.author Sossa, D
dc.date.accessioned 2024-01-17T15:55:35Z
dc.date.available 2024-01-17T15:55:35Z
dc.date.issued 2023
dc.identifier.uri https://repositorio.uoh.cl/handle/611/835
dc.description.abstract Let A be a real matrix of size mxn. In classical linear algebra, a real number sigma is called a singular value of A if there exist unit vectors u is an element of Rm and v is an element of Rn such that Av=sigma u and A inverted perpendicular u=sigma v. In variational analysis, a singular value of A is viewed as a critical value of the bilinear form u,Av when u and v range on the unit spheres of Rm and Rn, respectively. If u and v are further required to be nonnegative, then the idea of criticality is expressed by means of a pair of complementarity problems, namely, 0 <= u perpendicular to (Av-sigma u)>= 0 and 0 <= v perpendicular to (A inverted perpendicular u-sigma v)>= 0. The parameter sigma is now called a Pareto singular value of A. In this work we study the concept of Pareto singular value and, by way of application, we analyze a problem of nonnegative matrix factorization. The set Xi (A) of Pareto singular values of A is nonempty and finite. We derive an explicit formula for the maximum number of Pareto singular values in a matrix of prescribed size. The elements of Xi (A) can be found by solving a collection of classical singular value problems involving the principal submatrices of A. Unfortunately, such a method is cost prohibitive if m and n are large. For matrices of large size we propose an algorithm of alternating minimization type. This work is a continuation of our paper entitled Cone-constrained singular value problems published in the Journal of Convex Analysis (30, 2023, pp. 1285-1306).
dc.relation.uri http://dx.doi.org/10.1007/s11117-023-01000-9
dc.subject Pareto singular value
dc.subject Pareto eigenvalue
dc.subject Complementarity problem
dc.subject Nash equilibria
dc.subject Nonnegative matrix factorization
dc.subject 15A18
dc.subject 15B48
dc.subject 90C26
dc.subject 90C33
dc.title Singular value problems under nonnegativity constraints
dc.type Artículo
uoh.revista POSITIVITY
dc.identifier.doi 10.1007/s11117-023-01000-9
dc.citation.volume 27
dc.citation.issue 4
dc.identifier.orcid Seeger, Alberto/0000-0003-3114-7817
uoh.indizacion Web of Science


Ficheros en el ítem

Ficheros Tamaño Formato Ver

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem


Colecciones


Archivos

Artículos

Tesis

Videos


Cuartiles