Mostrar el registro sencillo del ítem
dc.contributor.author | Seeger, A | |
dc.contributor.author | Sossa, D | |
dc.date.accessioned | 2024-01-17T15:55:35Z | |
dc.date.available | 2024-01-17T15:55:35Z | |
dc.date.issued | 2023 | |
dc.identifier.uri | https://repositorio.uoh.cl/handle/611/835 | |
dc.description.abstract | Let A be a real matrix of size mxn. In classical linear algebra, a real number sigma is called a singular value of A if there exist unit vectors u is an element of Rm and v is an element of Rn such that Av=sigma u and A inverted perpendicular u=sigma v. In variational analysis, a singular value of A is viewed as a critical value of the bilinear form u,Av when u and v range on the unit spheres of Rm and Rn, respectively. If u and v are further required to be nonnegative, then the idea of criticality is expressed by means of a pair of complementarity problems, namely, 0 <= u perpendicular to (Av-sigma u)>= 0 and 0 <= v perpendicular to (A inverted perpendicular u-sigma v)>= 0. The parameter sigma is now called a Pareto singular value of A. In this work we study the concept of Pareto singular value and, by way of application, we analyze a problem of nonnegative matrix factorization. The set Xi (A) of Pareto singular values of A is nonempty and finite. We derive an explicit formula for the maximum number of Pareto singular values in a matrix of prescribed size. The elements of Xi (A) can be found by solving a collection of classical singular value problems involving the principal submatrices of A. Unfortunately, such a method is cost prohibitive if m and n are large. For matrices of large size we propose an algorithm of alternating minimization type. This work is a continuation of our paper entitled Cone-constrained singular value problems published in the Journal of Convex Analysis (30, 2023, pp. 1285-1306). | |
dc.relation.uri | http://dx.doi.org/10.1007/s11117-023-01000-9 | |
dc.subject | Pareto singular value | |
dc.subject | Pareto eigenvalue | |
dc.subject | Complementarity problem | |
dc.subject | Nash equilibria | |
dc.subject | Nonnegative matrix factorization | |
dc.subject | 15A18 | |
dc.subject | 15B48 | |
dc.subject | 90C26 | |
dc.subject | 90C33 | |
dc.title | Singular value problems under nonnegativity constraints | |
dc.type | Artículo | |
uoh.revista | POSITIVITY | |
dc.identifier.doi | 10.1007/s11117-023-01000-9 | |
dc.citation.volume | 27 | |
dc.citation.issue | 4 | |
dc.identifier.orcid | Seeger, Alberto/0000-0003-3114-7817 | |
uoh.indizacion | Web of Science |
Ficheros | Tamaño | Formato | Ver |
---|---|---|---|
No hay ficheros asociados a este ítem. |
El Repositorio Académico de la Universidad de O'Higgins es una plataforma de difusión documental que recopila, respalda y difunde la producción científica y académica de nuestra casa de estudios. En su interfaz, se integran diferentes tipos de documentos, tales como, libros, artículos académicos, investigaciones, videos, entre otros, los cuales pueden ser difundidos y utilizados con fines académicos y de investigación.
Los recursos contenidos en el repositorio son de libre acceso en texto completo, a excepción de aquellos que por restricciones propias del Derecho de Autor o por petición expresa de la autoría principal, no pueden ser difundidos en la condición mencionada.