Repositorio Académico UOH

Bibliotecas Universidad de O'Higgins



Mostrar el registro sencillo del ítem

dc.contributor.author Cartagena, O
dc.contributor.author Parra, S
dc.contributor.author Muñoz-Carpintero, D
dc.contributor.author Marín, LG
dc.contributor.author Sáez, D
dc.date.accessioned 2024-01-17T15:55:28Z
dc.date.available 2024-01-17T15:55:28Z
dc.date.issued 2021
dc.identifier.uri https://repositorio.uoh.cl/handle/611/815
dc.description.abstract The existing uncertainties during the operation of processes could strongly affect the performance of forecasting systems, control strategies and fault detection systems when they are not considered in the design. Because of that, the study of uncertainty quantification has gained more attention among the researchers during past decades. From this field of study, the prediction intervals arise as one of the techniques most used in literature to represent the effect of uncertainty over the future process behavior. Thus, researchers have focused on developing prediction intervals based on the use of fuzzy systems and neural networks, thanks to their usefulness for represent a wide range of processes as universal approximators. In this work, a review of the state-of-the-art of methodologies for prediction interval modelling based on fuzzy systems and neural networks is presented. The main characteristics of each method for prediction interval construction are presented and some recommendations are given for selecting the most appropriate method for specific applications. To illustrate the advantages of these methodologies, a comparative analysis of selected methods of prediction intervals is presented, using a benchmark series and real data from solar power generation of a microgrid.
dc.description.sponsorship Fondo Nacional de Desarrollo Cientifico y Tecnologico (FONDECYT)(Comision Nacional de Investigacion Cientifica y Tecnologica (CONICYT)CONICYT FONDECYT)
dc.description.sponsorship Solar Energy Research Center SERC-Chile
dc.description.sponsorship Instituto Sistemas Complejos de Ingenieria (ISCI) under grant ANID PIA/BASAL
dc.description.sponsorship ANID/PAI Convocatoria Nacional Subvencion a Instalacion en la Academia Convocatoria
dc.description.sponsorship ANID-PFCHA/Doctorado Nacional
dc.relation.uri http://dx.doi.org/10.1109/ACCESS.2021.3056003
dc.subject Predictive models
dc.subject Uncertainty
dc.subject Data models
dc.subject Probability density function
dc.subject Fuzzy logic
dc.subject Nonlinear dynamical systems
dc.subject Artificial neural networks
dc.subject Prediction intervals
dc.subject fuzzy interval
dc.subject neural network intervals
dc.subject uncertainty
dc.title Review on Fuzzy and Neural Prediction Interval Modelling for Nonlinear Dynamical Systems
dc.type Artículo
uoh.revista IEEE ACCESS
dc.identifier.doi 10.1109/ACCESS.2021.3056003
dc.citation.volume 9
dc.identifier.orcid Munoz-Carpintero, Diego/0000-0003-1194-4042
dc.identifier.orcid Cartagena, Oscar/0000-0002-5008-4180
dc.identifier.orcid Saez, Doris/0000-0001-8029-9871
dc.identifier.orcid Marin, Luis G./0000-0001-8450-6743
uoh.indizacion Web of Science


Ficheros en el ítem

Ficheros Tamaño Formato Ver

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem


Colecciones


Archivos

Artículos

Tesis

Videos


Cuartiles