Repositorio Académico UOH

Bibliotecas Universidad de O'Higgins



Mostrar el registro sencillo del ítem

dc.contributor.author Gallardo, C
dc.contributor.author Burgos-Mellado, C
dc.contributor.author Muñoz-Carpintero, D
dc.contributor.author Arias-Esquivel, Y
dc.contributor.author Verma, AK
dc.contributor.author Navas-Fonseca, A
dc.contributor.author Cárdenas-Dobson, R
dc.contributor.author Dragicevic, T
dc.date.accessioned 2024-01-17T15:55:25Z
dc.date.available 2024-01-17T15:55:25Z
dc.date.issued 2023
dc.identifier.uri https://repositorio.uoh.cl/handle/611/799
dc.description.abstract The modular multilevel converter (MMC) is a prominent solution for medium- to high-voltage and high-power conversion applications. Recently, distributed control strategies have been proposed to make this converter modular in terms of software and control hardware. In this control architecture, high-level control tasks are performed by a central controller (CC), whereas low-level control tasks are achieved by local controllers (LCs) placed on the MMC submodules. The CC and LCs use a cyber-physical system (CPS) to share all the necessary information to execute their respective control schemes. In this context, the CPS is vulnerable to cyberattacks, such as the false data injection attack (FDIA), where the data seen by the controllers are corrupted through illegitimate data intrusion. This cyberattack may hinder the MMC performance, producing suboptimal, or even unstable operations. Even more, diverse FDIAs can be generated using artificial intelligence methods to deceive FDIA detectors. This article proposes an FDIA detector based on the reinforcement learning (RL) technique to detect sophisticated FDIAs targeting the MMC control system. The performance of the proposed RL-based FDIA detector is verified via hardware-in-the-loop studies, showing its effectiveness in detecting sophisticated attack sequences affecting the MMC control system.
dc.description.sponsorship Agencia Nacional Investigacion y Desarrollo (ANID)
dc.description.sponsorship Basal Project(Comision Nacional de Investigacion Cientifica y Tecnologica (CONICYT)CONICYT PIA/BASAL)
dc.description.sponsorship Fondecyt(Comision Nacional de Investigacion Cientifica y Tecnologica (CONICYT)CONICYT FONDECYT)
dc.relation.uri http://dx.doi.org/10.1109/TIE.2023.3312433
dc.subject Detectors
dc.subject HVDC transmission
dc.subject Centralized control
dc.subject Voltage control
dc.subject Topology
dc.subject Decentralized control
dc.subject Computer crime
dc.subject Distributed control
dc.subject false data injection attack (FDIA)
dc.subject modular multilevel converter (MMC)
dc.subject reinforcement learning (RL)
dc.title Reinforcement Learning-Based False Data Injection Attacks Detector for Modular Multilevel Converters
dc.type Artículo
uoh.revista IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS
dc.identifier.doi 10.1109/TIE.2023.3312433
dc.identifier.orcid Arias-Esquivel, Yeiner/0000-0002-5340-3933
dc.identifier.orcid Fonseca, Alex Dario Navas/0000-0003-1393-8412
dc.identifier.orcid Munoz-Carpintero, Diego/0000-0003-1194-4042
dc.identifier.orcid Cardenas, Roberto/0000-0003-3853-7703
dc.identifier.orcid verma, Anant Kumar/0000-0002-8719-4869
dc.identifier.orcid Burgos-Mellado, Claudio/0000-0003-1990-0191
uoh.indizacion Web of Science


Ficheros en el ítem

Ficheros Tamaño Formato Ver

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem


Colecciones


Archivos

Artículos

Tesis

Videos


Cuartiles