Mostrar el registro sencillo del ítem
dc.contributor.author | Letelier, OR | |
dc.contributor.author | Espinoza, D | |
dc.contributor.author | Goycoolea, M | |
dc.contributor.author | Moreno, E | |
dc.contributor.author | Muñoz, G | |
dc.date.accessioned | 2024-01-17T15:55:19Z | |
dc.date.available | 2024-01-17T15:55:19Z | |
dc.date.issued | 2020 | |
dc.identifier.uri | https://repositorio.uoh.cl/handle/611/774 | |
dc.description.abstract | Given a discretized representation of an ore body known as a block model, the open pit mining production scheduling problem that we consider consists of defining which blocks to extract, when to extract them, and how or whether to process them, in such a way as to comply with operational constraints and maximize net present value. Although it has been established that this problem can be modeled with mixed-integer programming, the number of blocks used to represent real-world mines (millions) has made solving large instances nearly impossible in practice. In this article, we introduce a new methodology for tackling this problem and conduct computational tests using real problem sets ranging in size from 20,000 to 5,000,000 blocks and spanning 20 to 50 time periods. We consider both direct block scheduling and bench-phase scheduling problems, with capacity, blending, and minimum production constraints. Using new preprocessing and cutting planes techniques, we are able to reduce the linear programming relaxation value by up to 33%, depending on the instance. Then, using new heuristics, we are able to compute feasible solutions with an average gap of 1.52% relative to the previously computed bound. Moreover, after four hours of running a customized branch-and-bound algorithm on the problems with larger gaps, we are able to further reduce the average from 1.52% to 0.71%. | |
dc.description.sponsorship | Comision Nacional de Investigaci'on Cient'ifica y Tecnologica | |
dc.description.sponsorship | Basal CMM Universidad de Chile(Comision Nacional de Investigacion Cientifica y Tecnologica (CONICYT)CONICYT PIA/BASAL) | |
dc.description.sponsorship | Fondo de Fomento al Desarrollo Cientifico y Tecnologico | |
dc.description.sponsorship | government ofChile throughCONICYT | |
dc.description.sponsorship | government ofChile throughCONICYT [Basal CMMU. Chile] | |
dc.relation.uri | http://dx.doi.org/10.1287/opre.2019.1965 | |
dc.subject | open pit mining | |
dc.subject | production scheduling | |
dc.subject | column generation | |
dc.subject | heuristics | |
dc.subject | cutting planes | |
dc.subject | integer programming applications | |
dc.title | Production Scheduling for Strategic Open Pit Mine Planning: A Mixed-Integer Programming Approach | |
dc.type | Artículo | |
uoh.revista | OPERATIONS RESEARCH | |
dc.identifier.doi | 10.1287/opre.2019.1965 | |
dc.citation.volume | 68 | |
dc.citation.issue | 5 | |
dc.identifier.orcid | Moreno, Eduardo/0000-0002-3404-8294 | |
dc.identifier.orcid | Goycoolea, Marcos/0000-0003-1904-7215 | |
dc.identifier.orcid | Munoz, Gonzalo/0000-0002-9003-441X | |
dc.identifier.orcid | Rivera Letelier, Orlando/0000-0003-1966-1565 | |
uoh.indizacion | Web of Science |
Ficheros | Tamaño | Formato | Ver |
---|---|---|---|
No hay ficheros asociados a este ítem. |
El Repositorio Académico de la Universidad de O'Higgins es una plataforma de difusión documental que recopila, respalda y difunde la producción científica y académica de nuestra casa de estudios. En su interfaz, se integran diferentes tipos de documentos, tales como, libros, artículos académicos, investigaciones, videos, entre otros, los cuales pueden ser difundidos y utilizados con fines académicos y de investigación.
Los recursos contenidos en el repositorio son de libre acceso en texto completo, a excepción de aquellos que por restricciones propias del Derecho de Autor o por petición expresa de la autoría principal, no pueden ser difundidos en la condición mencionada.