Repositorio Académico UOH

Bibliotecas Universidad de O'Higgins



Mostrar el registro sencillo del ítem

dc.contributor.author Bienstock, D
dc.contributor.author Muñoz, G
dc.contributor.author Pokutta, S
dc.date.accessioned 2024-01-17T15:55:19Z
dc.date.available 2024-01-17T15:55:19Z
dc.date.issued 2023
dc.identifier.uri https://repositorio.uoh.cl/handle/611/772
dc.description.abstract Deep learning has received much attention lately due to the impressive empirical performance achieved by training algorithms. Consequently, a need for a better theoretical understanding of these problems has become more evident and multiple works in recent years have focused on this task. In this work, using a unified framework, we show that there exists a polyhedron that simultaneously encodes, in its facial structure, all possible deep neural network training problems that can arise from a given architecture, activation functions, loss function, and sample size. Notably, the size of the polyhedral representation depends only linearly on the sample size, and a better dependency on several other network parameters is unlikely. Using this general result, we compute the size of the polyhedral encoding for commonly used neural network architectures. Our results provide a new perspective on training problems through the lens of polyhedral theory and reveal strong structure arising from these problems. & COPY; 2023 Elsevier B.V. All rights reserved.
dc.description.sponsorship NSF, United States CAREER award
dc.description.sponsorship ONR, United States award
dc.description.sponsorship Institute for Data Valorization (IVADO), Canada
dc.relation.uri http://dx.doi.org/10.1016/j.disopt.2023.100795
dc.subject Deep learning
dc.subject Linear programming
dc.subject Polyhedral theory
dc.title Principled deep neural network training through linear programming
dc.type Artículo
uoh.revista DISCRETE OPTIMIZATION
dc.identifier.doi 10.1016/j.disopt.2023.100795
dc.citation.volume 49
uoh.indizacion Web of Science


Ficheros en el ítem

Ficheros Tamaño Formato Ver

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem


Colecciones


Archivos

Artículos

Tesis

Videos


Cuartiles