Mostrar el registro sencillo del ítem
dc.contributor.author | Bienstock, D | |
dc.contributor.author | Muñoz, G | |
dc.contributor.author | Pokutta, S | |
dc.date.accessioned | 2024-01-17T15:55:19Z | |
dc.date.available | 2024-01-17T15:55:19Z | |
dc.date.issued | 2023 | |
dc.identifier.uri | https://repositorio.uoh.cl/handle/611/772 | |
dc.description.abstract | Deep learning has received much attention lately due to the impressive empirical performance achieved by training algorithms. Consequently, a need for a better theoretical understanding of these problems has become more evident and multiple works in recent years have focused on this task. In this work, using a unified framework, we show that there exists a polyhedron that simultaneously encodes, in its facial structure, all possible deep neural network training problems that can arise from a given architecture, activation functions, loss function, and sample size. Notably, the size of the polyhedral representation depends only linearly on the sample size, and a better dependency on several other network parameters is unlikely. Using this general result, we compute the size of the polyhedral encoding for commonly used neural network architectures. Our results provide a new perspective on training problems through the lens of polyhedral theory and reveal strong structure arising from these problems. & COPY; 2023 Elsevier B.V. All rights reserved. | |
dc.description.sponsorship | NSF, United States CAREER award | |
dc.description.sponsorship | ONR, United States award | |
dc.description.sponsorship | Institute for Data Valorization (IVADO), Canada | |
dc.relation.uri | http://dx.doi.org/10.1016/j.disopt.2023.100795 | |
dc.subject | Deep learning | |
dc.subject | Linear programming | |
dc.subject | Polyhedral theory | |
dc.title | Principled deep neural network training through linear programming | |
dc.type | Artículo | |
uoh.revista | DISCRETE OPTIMIZATION | |
dc.identifier.doi | 10.1016/j.disopt.2023.100795 | |
dc.citation.volume | 49 | |
uoh.indizacion | Web of Science |
Ficheros | Tamaño | Formato | Ver |
---|---|---|---|
No hay ficheros asociados a este ítem. |
El Repositorio Académico de la Universidad de O'Higgins es una plataforma de difusión documental que recopila, respalda y difunde la producción científica y académica de nuestra casa de estudios. En su interfaz, se integran diferentes tipos de documentos, tales como, libros, artículos académicos, investigaciones, videos, entre otros, los cuales pueden ser difundidos y utilizados con fines académicos y de investigación.
Los recursos contenidos en el repositorio son de libre acceso en texto completo, a excepción de aquellos que por restricciones propias del Derecho de Autor o por petición expresa de la autoría principal, no pueden ser difundidos en la condición mencionada.