Repositorio Académico UOH

Bibliotecas Universidad de O'Higgins



Mostrar el registro sencillo del ítem

dc.contributor.author Verschae, J
dc.contributor.author Villagra, M
dc.contributor.author von Niederhäusern, L
dc.date.accessioned 2024-01-17T15:55:07Z
dc.date.available 2024-01-17T15:55:07Z
dc.date.issued 2023
dc.identifier.uri https://repositorio.uoh.cl/handle/611/722
dc.description.abstract Breaking symmetries is a popular way of speeding up the branch-and-bound method for symmetric integer programs. We study fundamental domains, which are minimal and closed symmetry breaking polyhedra. Our long-term goal is to understand the relationship between the complexity of such polyhedra and their symmetry breaking capability. Borrowing ideas from geometric group theory, we provide structural properties that relate the action of the group with the geometry of the facets of fundamental domains. Inspired by these insights, we provide a new generalized construction for fundamental domains, which we call generalized Dirichlet domain. Our construction is recursive and exploits the coset decomposition of the subgroups that fix given vectors in R-n. We use this construction to analyze a recently introduced set of symmetry breaking inequalities by Salvagnin (Symmetry Breaking Inequalities from the Schreier-Sims table. In: International Conference on the Integration of Constraint Programming, Artificial Intelligence, and Operations Research, pp. 521-529, 2018) and Liberti and Ostrowski (J Global Opt 60:183-194, 2014), called Schreier-Sims inequalities. In particular, this shows that every permutation group admits a fundamental domain with less than n facets. We also show that this bound is tight. Finally, we prove that the fundamental domain defined by the Schreier-Sims inequalities can contain an exponential number of isomorphic binary vectors for a given permutation group G. This provides evidence of the lack of symmetry breaking effectiveness of this fundamental domain. Conversely, a suitably constructed GDD for this G has linearly many inequalities and contains unique representatives for isomorphic binary vectors.
dc.description.sponsorship ANID/CONICYT Fondecyt
dc.description.sponsorship ANID-Millennium Science Initiative Program
dc.description.sponsorship ANID (Chile)
dc.relation.uri http://dx.doi.org/10.1007/s10107-022-01819-2
dc.subject Symmetry breaking inequalities
dc.subject Fundamental domains
dc.subject Polyhedral theory
dc.subject Orthogonal groups
dc.title On the geometry of symmetry breaking inequalities
dc.type Artículo
uoh.revista MATHEMATICAL PROGRAMMING
dc.identifier.doi 10.1007/s10107-022-01819-2
dc.citation.volume 197
dc.citation.issue 2
dc.identifier.orcid Verschae, Jose/0000-0002-2049-6467
uoh.indizacion Web of Science


Ficheros en el ítem

Ficheros Tamaño Formato Ver

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem


Colecciones


Archivos

Artículos

Tesis

Videos


Cuartiles