Repositorio Académico UOH

Bibliotecas Universidad de O'Higgins



Mostrar el registro sencillo del ítem

dc.contributor.author Müller, B
dc.contributor.author Muñoz, G
dc.contributor.author Gasse, M
dc.contributor.author Gleixner, A
dc.contributor.author Lodi, A
dc.contributor.author Serrano, F
dc.date.accessioned 2024-01-17T15:55:07Z
dc.date.available 2024-01-17T15:55:07Z
dc.date.issued 2022
dc.identifier.uri https://repositorio.uoh.cl/handle/611/718
dc.description.abstract Themost important ingredient for solving mixed-integer nonlinear programs (MINLPs) to global epsilon-optimality with spatial branch and bound is a tight, computationally tractable relaxation. Due to both theoretical and practical considerations, relaxations of MINLPs are usually required to be convex. Nonetheless, current optimization solvers can often successfully handle a moderate presence of nonconvexities, which opens the door for the use of potentially tighter nonconvex relaxations. In this work, we exploit this fact and make use of a nonconvex relaxation obtained via aggregation of constraints: a surrogate relaxation. These relaxations were actively studied for linear integer programs in the 70s and 80s, but they have been scarcely considered since. We revisit these relaxations in an MINLP setting and show the computational benefits and challenges they can have. Additionally, we study a generalization of such relaxation that allows for multiple aggregations simultaneously and present the first algorithm that is capable of computing the best set of aggregations. We propose a multitude of computational enhancements for improving its practical performance and evaluate the algorithm's ability to generate strong dual bounds through extensive computational experiments.
dc.description.sponsorship Research Campus MODAL (BMBF)(Federal Ministry of Education & Research (BMBF))
dc.description.sponsorship Institute for Data Valorization (IVADO)
dc.relation.uri http://dx.doi.org/10.1007/s10107-021-01691-6
dc.subject Surrogate relaxation
dc.subject MINLP
dc.subject Nonconvex optimization
dc.title On generalized surrogate duality in mixed-integer nonlinear programming
dc.type Artículo
uoh.revista MATHEMATICAL PROGRAMMING
dc.identifier.doi 10.1007/s10107-021-01691-6
dc.citation.volume 192
dc.citation.issue 1-2
dc.identifier.orcid Gleixner, Ambros/0000-0003-0391-5903
dc.identifier.orcid Munoz, Gonzalo/0000-0002-9003-441X
uoh.indizacion Web of Science


Ficheros en el ítem

Ficheros Tamaño Formato Ver

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem


Colecciones


Archivos

Artículos

Tesis

Videos


Cuartiles