Repositorio Académico UOH

Bibliotecas Universidad de O'Higgins



Mostrar el registro sencillo del ítem

dc.contributor.author Donoso, S
dc.contributor.author Durand, F
dc.contributor.author Maass, A
dc.contributor.author Petite, S
dc.date.accessioned 2024-01-17T15:55:06Z
dc.date.available 2024-01-17T15:55:06Z
dc.date.issued 2017
dc.identifier.uri https://repositorio.uoh.cl/handle/611/713
dc.description.abstract In this article we study automorphisms of Toeplitz subshifts. Such groups are abelian and any finitely generated torsion subgroup is finite and cyclic. When the complexity is non-superlinear, we prove that the automorphism group is, modulo a finite cyclic group, generated by a unique root of the shift. In the subquadratic complexity case, we show that the automorphism group modulo the torsion is generated by the roots of the shift map and that the result of the non-superlinear case is optimal. Namely, for any epsilon > 0 we construct examples of minimal Toeplitz subshifts with complexity bounded by Cn(1+epsilon) whose automorphism groups are not finitely generated Finally, we observe the coalescence and the automorphism group give no restriction on the complexity since we provide a family of coalescent Toeplitz subshifts with positive entropy such that their automorphism groups are arbitrary finitely generated infinite abelian groups with cyclic torsion subgroup (eventually restricted to powers of the shift).
dc.description.sponsorship ERC(European Research Council (ERC))
dc.description.sponsorship CMM-Basal grant(Comision Nacional de Investigacion Cientifica y Tecnologica (CONICYT)CONICYT PIA/BASAL)
dc.relation.uri http://dx.doi.org/10.19086/da.1832
dc.subject Toeplitz subshifts
dc.subject automorphism group
dc.subject complexity function
dc.subject coalescence
dc.title On automorphism groups of Toeplitz subshifts
dc.type Artículo
uoh.revista DISCRETE ANALYSIS
dc.identifier.doi 10.19086/da.1832
dc.identifier.orcid Maass, Alejandro E/0000-0002-7038-4527
dc.identifier.orcid Donoso, Sebastián/0000-0001-9870-7984
dc.identifier.orcid Donoso, Sebastian/0000-0001-9870-7984
dc.identifier.orcid Durand, Fabien/0000-0001-6625-1839
uoh.indizacion Web of Science


Ficheros en el ítem

Ficheros Tamaño Formato Ver

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem


Colecciones


Archivos

Artículos

Tesis

Videos


Cuartiles