Repositorio Académico UOH

Bibliotecas Universidad de O'Higgins



Mostrar el registro sencillo del ítem

dc.contributor.author Seeger, A
dc.contributor.author Sossa, D
dc.date.accessioned 2024-01-17T15:54:54Z
dc.date.available 2024-01-17T15:54:54Z
dc.date.issued 2021
dc.identifier.uri https://repositorio.uoh.cl/handle/611/655
dc.description.abstract This work elaborates on the old problem of measuring the degree of similarity, say f(G,H), between a pair of connected graphs G and H, not necessarily of the same order. The choice of a similarity index f depends essentially on the graph properties that are considered as important in a given context. As relevant information on a graph, one may consider for instance its degree sequence, its characteristic polynomial, and so on. We explore some new similarity indices based on nonstandard spectral information contained in the graphs under comparison. By nonstandard spectral information in a graph, we mean the set of complementarity eigenvalues of the adjacency matrix. From such a spectral perspective, two distinct graphs G and H are viewed as highly similar if they share a large number of complementarity eigenvalues. This basic idea will be cast in a rigorous mathematical formalism.
dc.relation.uri http://dx.doi.org/10.1007/s00373-020-02260-y
dc.subject Connected graph
dc.subject Graph determination
dc.subject Similarity index
dc.subject Jaccard's coefficient
dc.subject Complementarity eigenvalue
dc.subject Complementarity spectrum
dc.subject Induced subgraph
dc.title Measuring Similarity Between Connected Graphs: The Role of Induced Subgraphs and Complementarity Eigenvalues
dc.type Artículo
uoh.revista GRAPHS AND COMBINATORICS
dc.identifier.doi 10.1007/s00373-020-02260-y
dc.citation.volume 37
dc.citation.issue 2
uoh.indizacion Web of Science


Ficheros en el ítem

Ficheros Tamaño Formato Ver

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem


Colecciones


Archivos

Artículos

Tesis

Videos


Cuartiles