Repositorio Académico UOH

Bibliotecas Universidad de O'Higgins



Mostrar el registro sencillo del ítem

dc.contributor.author Muñoz, G
dc.contributor.author Serrano, F
dc.date.accessioned 2024-01-17T15:54:53Z
dc.date.available 2024-01-17T15:54:53Z
dc.date.issued 2022
dc.identifier.uri https://repositorio.uoh.cl/handle/611/652
dc.description.abstract The intersection cut paradigm is a powerful framework that facilitates the generation of valid linear inequalities, or cutting planes, for a potentially complex set S. The key ingredients in this construction are a simplicial conic relaxation of S and an S-free set: a convex zone whose interior does not intersect S. Ideally, such S-free set would be maximal inclusion-wise, as it would generate a deeper cutting plane. However, maximality can be a challenging goal in general. In this work, we show how to construct maximal S-free sets when S is defined by a general quadratic inequality. Our maximal S-free sets are such that efficient separation of a vertex in LP-based approaches to quadratically constrained problems is guaranteed.
dc.description.sponsorship IVADO Institute for Data Valorization through the IVADO Post-Doctoral Fellowship program
dc.description.sponsorship German Federal Ministry for Economic Affairs and Energy
dc.description.sponsorship German Federal Ministry of Education and Research (BMBF)(Federal Ministry of Education & Research (BMBF))
dc.description.sponsorship Government of Chile through the FONDECYT Grant
dc.relation.uri http://dx.doi.org/10.1007/s10107-021-01738-8
dc.subject 90C20
dc.subject 90C26
dc.subject 90C30
dc.title Maximal quadratic-free sets
dc.type Artículo
uoh.revista MATHEMATICAL PROGRAMMING
dc.identifier.doi 10.1007/s10107-021-01738-8
dc.citation.volume 192
dc.citation.issue 1-2
dc.identifier.orcid Soares, Felipe/0000-0002-2837-1853
dc.identifier.orcid Munoz, Gonzalo/0000-0002-9003-441X
dc.identifier.orcid Serrano, Felipe/0000-0002-7892-3951
uoh.indizacion Web of Science


Ficheros en el ítem

Ficheros Tamaño Formato Ver

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem


Colecciones


Archivos

Artículos

Tesis

Videos


Cuartiles