Mostrar el registro sencillo del ítem
dc.contributor.author | Muñoz, G | |
dc.contributor.author | Serrano, F | |
dc.date.accessioned | 2024-01-17T15:54:53Z | |
dc.date.available | 2024-01-17T15:54:53Z | |
dc.date.issued | 2022 | |
dc.identifier.uri | https://repositorio.uoh.cl/handle/611/652 | |
dc.description.abstract | The intersection cut paradigm is a powerful framework that facilitates the generation of valid linear inequalities, or cutting planes, for a potentially complex set S. The key ingredients in this construction are a simplicial conic relaxation of S and an S-free set: a convex zone whose interior does not intersect S. Ideally, such S-free set would be maximal inclusion-wise, as it would generate a deeper cutting plane. However, maximality can be a challenging goal in general. In this work, we show how to construct maximal S-free sets when S is defined by a general quadratic inequality. Our maximal S-free sets are such that efficient separation of a vertex in LP-based approaches to quadratically constrained problems is guaranteed. | |
dc.description.sponsorship | IVADO Institute for Data Valorization through the IVADO Post-Doctoral Fellowship program | |
dc.description.sponsorship | German Federal Ministry for Economic Affairs and Energy | |
dc.description.sponsorship | German Federal Ministry of Education and Research (BMBF)(Federal Ministry of Education & Research (BMBF)) | |
dc.description.sponsorship | Government of Chile through the FONDECYT Grant | |
dc.relation.uri | http://dx.doi.org/10.1007/s10107-021-01738-8 | |
dc.subject | 90C20 | |
dc.subject | 90C26 | |
dc.subject | 90C30 | |
dc.title | Maximal quadratic-free sets | |
dc.type | Artículo | |
uoh.revista | MATHEMATICAL PROGRAMMING | |
dc.identifier.doi | 10.1007/s10107-021-01738-8 | |
dc.citation.volume | 192 | |
dc.citation.issue | 1-2 | |
dc.identifier.orcid | Soares, Felipe/0000-0002-2837-1853 | |
dc.identifier.orcid | Munoz, Gonzalo/0000-0002-9003-441X | |
dc.identifier.orcid | Serrano, Felipe/0000-0002-7892-3951 | |
uoh.indizacion | Web of Science |
Ficheros | Tamaño | Formato | Ver |
---|---|---|---|
No hay ficheros asociados a este ítem. |
El Repositorio Académico de la Universidad de O'Higgins es una plataforma de difusión documental que recopila, respalda y difunde la producción científica y académica de nuestra casa de estudios. En su interfaz, se integran diferentes tipos de documentos, tales como, libros, artículos académicos, investigaciones, videos, entre otros, los cuales pueden ser difundidos y utilizados con fines académicos y de investigación.
Los recursos contenidos en el repositorio son de libre acceso en texto completo, a excepción de aquellos que por restricciones propias del Derecho de Autor o por petición expresa de la autoría principal, no pueden ser difundidos en la condición mencionada.