Mostrar el registro sencillo del ítem
dc.contributor.author | Adly, S | |
dc.contributor.author | Hantoute, A | |
dc.contributor.author | Nguyen, BT | |
dc.date.accessioned | 2024-01-17T15:54:50Z | |
dc.date.available | 2024-01-17T15:54:50Z | |
dc.date.issued | 2019 | |
dc.identifier.uri | https://repositorio.uoh.cl/handle/611/640 | |
dc.description.abstract | In this paper, we study the existence and the stability in the sense of Lyapunov of differential inclusions governed by the normal cone to a given prox-regular set, which is subject to a Lipschitzian perturbation. We prove that such apparently more general non-smooth dynamics can be indeed remodeled into the classical theory of differential inclusions, involving maximal monotone operators. This result is new in the literature. It permits to make use of the rich and abundant achievements in the class of monotone operators to study different stability aspects, and to give new proofs for the existence, the continuity, and the differentiability of solutions. This going back and forth between these two models of differential inclusions is made possible thanks to a viability result for maximal monotone operators. Applications will concern Luenberger-like observers associated with these differential inclusions. | |
dc.description.sponsorship | Conicyt grants | |
dc.relation.uri | http://dx.doi.org/10.1007/s10957-018-1446-7 | |
dc.subject | Differential inclusions | |
dc.subject | Prox-regular sets | |
dc.subject | Maximal monotone operators | |
dc.subject | Lyapunov functions | |
dc.subject | a-Lyapunov pairs | |
dc.subject | Invariant sets | |
dc.subject | Observer designs | |
dc.title | Lyapunov Stability of Differential Inclusions Involving Prox-Regular Sets via Maximal Monotone Operators | |
dc.type | Artículo | |
uoh.revista | JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS | |
dc.identifier.doi | 10.1007/s10957-018-1446-7 | |
dc.citation.volume | 182 | |
dc.citation.issue | 3 | |
dc.identifier.orcid | hantoute, abderrahim/0000-0002-7347-048X | |
uoh.indizacion | Web of Science |
Ficheros | Tamaño | Formato | Ver |
---|---|---|---|
No hay ficheros asociados a este ítem. |
El Repositorio Académico de la Universidad de O'Higgins es una plataforma de difusión documental que recopila, respalda y difunde la producción científica y académica de nuestra casa de estudios. En su interfaz, se integran diferentes tipos de documentos, tales como, libros, artículos académicos, investigaciones, videos, entre otros, los cuales pueden ser difundidos y utilizados con fines académicos y de investigación.
Los recursos contenidos en el repositorio son de libre acceso en texto completo, a excepción de aquellos que por restricciones propias del Derecho de Autor o por petición expresa de la autoría principal, no pueden ser difundidos en la condición mencionada.