Repositorio Académico UOH

Bibliotecas Universidad de O'Higgins



Mostrar el registro sencillo del ítem

dc.contributor.author Adly, S
dc.contributor.author Hantoute, A
dc.contributor.author Nguyen, BT
dc.date.accessioned 2024-01-17T15:54:50Z
dc.date.available 2024-01-17T15:54:50Z
dc.date.issued 2019
dc.identifier.uri https://repositorio.uoh.cl/handle/611/640
dc.description.abstract In this paper, we study the existence and the stability in the sense of Lyapunov of differential inclusions governed by the normal cone to a given prox-regular set, which is subject to a Lipschitzian perturbation. We prove that such apparently more general non-smooth dynamics can be indeed remodeled into the classical theory of differential inclusions, involving maximal monotone operators. This result is new in the literature. It permits to make use of the rich and abundant achievements in the class of monotone operators to study different stability aspects, and to give new proofs for the existence, the continuity, and the differentiability of solutions. This going back and forth between these two models of differential inclusions is made possible thanks to a viability result for maximal monotone operators. Applications will concern Luenberger-like observers associated with these differential inclusions.
dc.description.sponsorship Conicyt grants
dc.relation.uri http://dx.doi.org/10.1007/s10957-018-1446-7
dc.subject Differential inclusions
dc.subject Prox-regular sets
dc.subject Maximal monotone operators
dc.subject Lyapunov functions
dc.subject a-Lyapunov pairs
dc.subject Invariant sets
dc.subject Observer designs
dc.title Lyapunov Stability of Differential Inclusions Involving Prox-Regular Sets via Maximal Monotone Operators
dc.type Artículo
uoh.revista JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS
dc.identifier.doi 10.1007/s10957-018-1446-7
dc.citation.volume 182
dc.citation.issue 3
dc.identifier.orcid hantoute, abderrahim/0000-0002-7347-048X
uoh.indizacion Web of Science


Ficheros en el ítem

Ficheros Tamaño Formato Ver

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem


Colecciones


Archivos

Artículos

Tesis

Videos


Cuartiles