Mostrar el registro sencillo del ítem
dc.contributor.author | Nguyen, BT | |
dc.contributor.author | Khanh, PD | |
dc.date.accessioned | 2024-01-17T15:54:49Z | |
dc.date.available | 2024-01-17T15:54:49Z | |
dc.date.issued | 2021 | |
dc.identifier.uri | https://repositorio.uoh.cl/handle/611/635 | |
dc.description.abstract | We provide some necessary and sufficient conditions for a proper lower semicontinuous convex function, defined on a real Banach space, to be locally or globally Lipschitz continuous. Our criteria rely on the existence of a bounded selection of the subdifferential mapping and the intersections of the subdifferential mapping and the normal cone operator to the domain of the given function. Moreover, we also point out that the Lipschitz continuity of the given function on an open and bounded (not necessarily convex) set can be characterized via the existence of a bounded selection of the subdifferential mapping on the boundary of the given set and as a consequence it is equivalent to the local Lipschitz continuity at every point on the boundary of that set. Our results are applied to extend a Lipschitz and convex function to the whole space and to study the Lipschitz continuity of its Moreau envelope functions. | |
dc.description.sponsorship | Fondecyt Postdoc Project | |
dc.description.sponsorship | Basal Program from CONICYT-Chile | |
dc.description.sponsorship | National Foundation for Science and Technology Development (NAFOSTED)(National Foundation for Science & Technology Development (NAFOSTED)) | |
dc.relation.uri | http://dx.doi.org/10.1007/s00245-020-09689-w | |
dc.subject | Convex function | |
dc.subject | Lipschitz continuity | |
dc.subject | Calmness | |
dc.subject | Subdifferential | |
dc.subject | Normal cone | |
dc.subject | Moreau envelope function | |
dc.title | Lipschitz Continuity of Convex Functions | |
dc.type | Artículo | |
uoh.revista | APPLIED MATHEMATICS AND OPTIMIZATION | |
dc.identifier.doi | 10.1007/s00245-020-09689-w | |
dc.citation.volume | 84 | |
dc.citation.issue | 2 | |
uoh.indizacion | Web of Science |
Ficheros | Tamaño | Formato | Ver |
---|---|---|---|
No hay ficheros asociados a este ítem. |
El Repositorio Académico de la Universidad de O'Higgins es una plataforma de difusión documental que recopila, respalda y difunde la producción científica y académica de nuestra casa de estudios. En su interfaz, se integran diferentes tipos de documentos, tales como, libros, artículos académicos, investigaciones, videos, entre otros, los cuales pueden ser difundidos y utilizados con fines académicos y de investigación.
Los recursos contenidos en el repositorio son de libre acceso en texto completo, a excepción de aquellos que por restricciones propias del Derecho de Autor o por petición expresa de la autoría principal, no pueden ser difundidos en la condición mencionada.