Repositorio Académico UOH

Bibliotecas Universidad de O'Higgins



Mostrar el registro sencillo del ítem

dc.contributor.author Nguyen, BT
dc.contributor.author Khanh, PD
dc.date.accessioned 2024-01-17T15:54:49Z
dc.date.available 2024-01-17T15:54:49Z
dc.date.issued 2021
dc.identifier.uri https://repositorio.uoh.cl/handle/611/635
dc.description.abstract We provide some necessary and sufficient conditions for a proper lower semicontinuous convex function, defined on a real Banach space, to be locally or globally Lipschitz continuous. Our criteria rely on the existence of a bounded selection of the subdifferential mapping and the intersections of the subdifferential mapping and the normal cone operator to the domain of the given function. Moreover, we also point out that the Lipschitz continuity of the given function on an open and bounded (not necessarily convex) set can be characterized via the existence of a bounded selection of the subdifferential mapping on the boundary of the given set and as a consequence it is equivalent to the local Lipschitz continuity at every point on the boundary of that set. Our results are applied to extend a Lipschitz and convex function to the whole space and to study the Lipschitz continuity of its Moreau envelope functions.
dc.description.sponsorship Fondecyt Postdoc Project
dc.description.sponsorship Basal Program from CONICYT-Chile
dc.description.sponsorship National Foundation for Science and Technology Development (NAFOSTED)(National Foundation for Science & Technology Development (NAFOSTED))
dc.relation.uri http://dx.doi.org/10.1007/s00245-020-09689-w
dc.subject Convex function
dc.subject Lipschitz continuity
dc.subject Calmness
dc.subject Subdifferential
dc.subject Normal cone
dc.subject Moreau envelope function
dc.title Lipschitz Continuity of Convex Functions
dc.type Artículo
uoh.revista APPLIED MATHEMATICS AND OPTIMIZATION
dc.identifier.doi 10.1007/s00245-020-09689-w
dc.citation.volume 84
dc.citation.issue 2
uoh.indizacion Web of Science


Ficheros en el ítem

Ficheros Tamaño Formato Ver

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem


Colecciones


Archivos

Artículos

Tesis

Videos


Cuartiles