Mostrar el registro sencillo del ítem
dc.contributor.author | Canoy, R | |
dc.contributor.author | Bucarey, V | |
dc.contributor.author | Mandi, J | |
dc.contributor.author | Guns, T | |
dc.date.accessioned | 2024-01-17T15:54:48Z | |
dc.date.available | 2024-01-17T15:54:48Z | |
dc.date.issued | 2023 | |
dc.identifier.uri | https://repositorio.uoh.cl/handle/611/629 | |
dc.description.abstract | We investigate a learning decision support system for vehicle routing, where the routing engine learns implicit preferences that human planners have when manually creating route plans (or routings). The goal is to use these learned subjective preferences on top of the distance-based objective criterion in vehicle routing systems. This is an alternative to the practice of distinctively formulating a custom vehicle routing problem (VRP) for every company with its own routing requirements. Instead, we assume the presence of past vehicle routing solutions over similar sets of customers, and learn to make similar choices. The learning approach is based on the concept of learning a Markov model, which corresponds to a probabilistic transition matrix, rather than a deterministic distance matrix. This nevertheless allows us to use existing arc routing VRP software in creating the actual routings, and to optimize over both distances and preferences at the same time. For the learning, we explore different schemes to construct the probabilistic transition matrix that can co-evolve with changing preferences over time. Our results on randomly generated instances and on a use-case with a small transportation company show that our method is able to generate results that are close to the manually created solutions, without needing to characterize all constraints and sub-objectives explicitly. Even in the case of changes in the customer sets, our approach is able to find solutions that are closer to the actual routings than when using only distances, and hence, solutions that require fewer manual changes when transformed into practical routings. | |
dc.description.sponsorship | ANID Fondecyt Iniciacion | |
dc.description.sponsorship | FWO Flanders(FWO) | |
dc.description.sponsorship | European Research Council (ERC H2020)(European Research Council (ERC)) | |
dc.description.sponsorship | Institute for the Encouragement of Scientific Research & Innovation of Brussels | |
dc.relation.uri | http://dx.doi.org/10.1007/s10601-023-09363-2 | |
dc.subject | Preference learning | |
dc.subject | Vehicle routing | |
dc.subject | Markov models | |
dc.subject | Transition probabilities | |
dc.title | Learn and route: learning implicit preferences for vehicle routing | |
dc.type | Artículo | |
uoh.revista | CONSTRAINTS | |
dc.identifier.doi | 10.1007/s10601-023-09363-2 | |
dc.identifier.orcid | Bucarey Lopez, Victor/0000-0002-3043-8404 | |
dc.identifier.orcid | Canoy, Rocsildes/0000-0003-1810-082X | |
uoh.indizacion | Web of Science |
Ficheros | Tamaño | Formato | Ver |
---|---|---|---|
No hay ficheros asociados a este ítem. |
El Repositorio Académico de la Universidad de O'Higgins es una plataforma de difusión documental que recopila, respalda y difunde la producción científica y académica de nuestra casa de estudios. En su interfaz, se integran diferentes tipos de documentos, tales como, libros, artículos académicos, investigaciones, videos, entre otros, los cuales pueden ser difundidos y utilizados con fines académicos y de investigación.
Los recursos contenidos en el repositorio son de libre acceso en texto completo, a excepción de aquellos que por restricciones propias del Derecho de Autor o por petición expresa de la autoría principal, no pueden ser difundidos en la condición mencionada.