Mostrar el registro sencillo del ítem
dc.contributor.author | Maldonado, C | |
dc.contributor.author | Mora-Poblete, F | |
dc.contributor.author | Contreras-Soto, RI | |
dc.contributor.author | Ahmar, S | |
dc.contributor.author | Chen, JT | |
dc.contributor.author | do Amaral, AT | |
dc.contributor.author | Scapim, CA | |
dc.date.accessioned | 2024-01-17T15:54:36Z | |
dc.date.available | 2024-01-17T15:54:36Z | |
dc.date.issued | 2020 | |
dc.identifier.uri | https://repositorio.uoh.cl/handle/611/562 | |
dc.description.abstract | Genomic selection models were investigated to predict several complex traits in breeding populations of Zea mays L. and Eucalyptus globulus Labill. For this, the following methods of Machine Learning (ML) were implemented: (i) Deep Learning (DL) and (ii) Bayesian Regularized Neural Network (BRNN) both in combination with different hyperparameters. These ML methods were also compared with Genomic Best Linear Unbiased Prediction (GBLUP) and different Bayesian regression models [Bayes A, Bayes B, Bayes C pi, Bayesian Ridge Regression, Bayesian LASSO, and Reproducing Kernel Hilbert Space (RKHS)]. DL models, using Rectified Linear Units (as the activation function), had higher predictive ability values, which varied from 0.27 (pilodyn penetration of 6 years old eucalypt trees) to 0.78 (flowering-related traits of maize). Moreover, the larger mini-batch size (100%) had a significantly higher predictive ability for wood-related traits than the smaller mini-batch size (10%). On the other hand, in the BRNN method, the architectures of one and two layers that used only the pureline function showed better results of prediction, with values ranging from 0.21 (pilodyn penetration) to 0.71 (flowering traits). A significant increase in the prediction ability was observed for DL in comparison with other methods of genomic prediction (Bayesian alphabet models, GBLUP, RKHS, and BRNN). Another important finding was the usefulness of DL models (through an iterative algorithm) as an SNP detection strategy for genome-wide association studies. The results of this study confirm the importance of DL for genome-wide analyses and crop/tree improvement strategies, which holds promise for accelerating breeding progress. | |
dc.description.sponsorship | FONDECYT(Comision Nacional de Investigacion Cientifica y Tecnologica (CONICYT)CONICYT FONDECYT) | |
dc.description.sponsorship | Semillas Imperial SpA | |
dc.description.sponsorship | CNPq(Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPQ)) | |
dc.description.sponsorship | CAPES(Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES)) | |
dc.relation.uri | http://dx.doi.org/10.3389/fpls.2020.593897 | |
dc.subject | deep learning | |
dc.subject | Bayesian regularized neural network | |
dc.subject | genomic prediction | |
dc.subject | machine learning | |
dc.subject | single-nucleotide polymorphisms | |
dc.subject | tropical maize | |
dc.subject | eucalypt | |
dc.title | Genome-Wide Prediction of Complex Traits in Two Outcrossing Plant Species Through Deep Learning and Bayesian Regularized Neural Network | |
dc.type | Artículo | |
uoh.revista | FRONTIERS IN PLANT SCIENCE | |
dc.identifier.doi | 10.3389/fpls.2020.593897 | |
dc.citation.volume | 11 | |
dc.identifier.orcid | do Amaral, Antônio Teixeira/0000-0003-4831-7878 | |
dc.identifier.orcid | Contreras-Soto, Rodrigo/0000-0001-6468-9394 | |
dc.identifier.orcid | Chen, Jen-Tsung/0000-0002-3540-4449 | |
dc.identifier.orcid | scapim, carlos/0000-0002-7047-9606 | |
dc.identifier.orcid | Ahmar, Sunny/0000-0001-6802-2386 | |
uoh.indizacion | Web of Science |
Ficheros | Tamaño | Formato | Ver |
---|---|---|---|
No hay ficheros asociados a este ítem. |
El Repositorio Académico de la Universidad de O'Higgins es una plataforma de difusión documental que recopila, respalda y difunde la producción científica y académica de nuestra casa de estudios. En su interfaz, se integran diferentes tipos de documentos, tales como, libros, artículos académicos, investigaciones, videos, entre otros, los cuales pueden ser difundidos y utilizados con fines académicos y de investigación.
Los recursos contenidos en el repositorio son de libre acceso en texto completo, a excepción de aquellos que por restricciones propias del Derecho de Autor o por petición expresa de la autoría principal, no pueden ser difundidos en la condición mencionada.