Mostrar el registro sencillo del ítem
dc.contributor.author | Mordukhovich, B | |
dc.contributor.author | Pérez-Aros, P | |
dc.date.accessioned | 2024-01-17T15:54:35Z | |
dc.date.available | 2024-01-17T15:54:35Z | |
dc.date.issued | 2021 | |
dc.identifier.uri | https://repositorio.uoh.cl/handle/611/552 | |
dc.description.abstract | This paper is devoted to the study of the expected-integral multifunctions given in the form E-Phi (x) := integral(T) Phi(t)(x)d mu, where Phi: T x R-n paired right arrows R-m is a set-valued mapping on a measure space (T, A, mu). Such multifunctions appear in applications to stochastic programming, which require developing efficient calculus rules of generalized differentiation. Major calculus rules are developed in this paper for coderivatives of multifunctions E-Phi and second-order subdifferentials of the corresponding expected-integral functionals with applications to constraint systems arising in stochastic programming. The paper is self-contained with presentation in the preliminaries of some needed results on sequential first-order subdifferential calculus of expected-integral functionals taken from the first paper of this series. | |
dc.description.sponsorship | USA National Science Foundation(National Science Foundation (NSF)) | |
dc.description.sponsorship | USA Air Force Office of Scientific Research | |
dc.description.sponsorship | Australian Research Council(Australian Research Council) | |
dc.description.sponsorship | ANID grant Fondecyt Regular | |
dc.relation.uri | http://dx.doi.org/10.1137/21M1392541 | |
dc.subject | stochastic programming | |
dc.subject | generalized differentiation | |
dc.subject | integral multifunctions | |
dc.subject | Liebniz rules | |
dc.subject | Lipschitzian stability | |
dc.title | Generalized leibniz rules and lipschitzian stability for expected-integral mappings | |
dc.type | Artículo | |
uoh.revista | SIAM JOURNAL ON OPTIMIZATION | |
dc.identifier.doi | 10.1137/21M1392541 | |
dc.citation.volume | 31 | |
dc.citation.issue | 4 | |
dc.identifier.orcid | Perez-Aros, Pedro/0000-0002-8756-3011 | |
uoh.indizacion | Web of Science |
Ficheros | Tamaño | Formato | Ver |
---|---|---|---|
No hay ficheros asociados a este ítem. |
El Repositorio Académico de la Universidad de O'Higgins es una plataforma de difusión documental que recopila, respalda y difunde la producción científica y académica de nuestra casa de estudios. En su interfaz, se integran diferentes tipos de documentos, tales como, libros, artículos académicos, investigaciones, videos, entre otros, los cuales pueden ser difundidos y utilizados con fines académicos y de investigación.
Los recursos contenidos en el repositorio son de libre acceso en texto completo, a excepción de aquellos que por restricciones propias del Derecho de Autor o por petición expresa de la autoría principal, no pueden ser difundidos en la condición mencionada.