UOH Academic Repository

Universidad de O'Higgins Libraries



Show simple item record

dc.contributor.author van Ackooij, W
dc.contributor.author Henrion, R
dc.contributor.author Perez-Aros, P
dc.date.accessioned 2024-01-17T15:54:34Z
dc.date.available 2024-01-17T15:54:34Z
dc.date.issued 2020
dc.identifier.uri https://repositorio.uoh.cl/handle/611/551
dc.description.abstract Probability functions are a powerful modelling tool when seeking to account for uncertainty in optimization problems. In practice, such uncertainty may result from different sources for which unequal information is available. A convenient combination with ideas from robust optimization then leads to probust functions, i.e. probability functions acting on generalized semi-infinite inequality systems. In this paper we employ the powerful variational tools developed by Boris Mordukhovich to study generalized differentiation of such probust functions. We also provide explicit outer estimates of the generalized subdifferentials in terms of nominal data.
dc.relation.uri http://dx.doi.org/10.1080/02331934.2019.1576670
dc.subject Stochastic optimization
dc.subject probabilistic constraints
dc.subject chance constraints
dc.subject gradients of probability functions
dc.subject probust constraints
dc.title Generalized gradients for probabilistic/robust (probust) constraints
dc.type Artículo
uoh.revista OPTIMIZATION
dc.identifier.doi 10.1080/02331934.2019.1576670
dc.citation.volume 69
dc.citation.issue 7-8
dc.identifier.orcid Perez-Aros, Pedro/0000-0002-8756-3011
dc.identifier.orcid van Ackooij, Wim/0000-0002-9943-3572
uoh.indizacion Web of Science


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Search


Browse

My Account


Colecciones


Archivos

Artículos

Tesis

Videos


Cuartiles