Repositorio Académico UOH

Bibliotecas Universidad de O'Higgins



Mostrar el registro sencillo del ítem

dc.contributor.author Nguyen, BT
dc.contributor.author Khanh, PD
dc.date.accessioned 2024-01-17T15:54:29Z
dc.date.available 2024-01-17T15:54:29Z
dc.date.issued 2020
dc.identifier.uri https://repositorio.uoh.cl/handle/611/518
dc.description.abstract Representation formulas for faces and support functions of the values of maximal monotone operators are established in two cases: either the operators are defined on reflexive and locally uniformly convex real Banach spaces with locally uniformly convex duals, or their domains have nonempty interiors on real Banach spaces. Faces and support functions are characterized by the limit values of the minimal-norm selections of maximal monotone operators in the first case while in the second case they are represented by the limit values of any selection of maximal monotone operators. These obtained formulas are applied to study the structure of maximal monotone operators: the local unique determination from their minimal-norm selections, the local and global decompositions, and the unique determination on dense subsets of their domains.
dc.description.sponsorship Fondecyt Postdoc Project
dc.description.sponsorship Basal Program from CONICYT-Chile
dc.description.sponsorship National Foundation for Science and Technology Development (NAFOSTED)(National Foundation for Science & Technology Development (NAFOSTED))
dc.relation.uri http://dx.doi.org/10.1007/s10957-020-01737-3
dc.subject Maximal monotone operator
dc.subject Face
dc.subject Support function
dc.subject Minimal-norm selection
dc.subject Yosida approximation
dc.subject Strong convergence
dc.subject Weak convergence
dc.title Faces and Support Functions for the Values of Maximal Monotone Operators
dc.type Artículo
uoh.revista JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS
dc.identifier.doi 10.1007/s10957-020-01737-3
dc.citation.volume 186
dc.citation.issue 3
uoh.indizacion Web of Science


Ficheros en el ítem

Ficheros Tamaño Formato Ver

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem


Colecciones


Archivos

Artículos

Tesis

Videos


Cuartiles