Repositorio Académico UOH

Bibliotecas Universidad de O'Higgins



Mostrar el registro sencillo del ítem

dc.contributor.author Pérez-Aros, P
dc.contributor.author Salas, D
dc.contributor.author Vilches, E
dc.date.accessioned 2024-01-17T15:54:16Z
dc.date.available 2024-01-17T15:54:16Z
dc.date.issued 2021
dc.identifier.uri https://repositorio.uoh.cl/handle/611/429
dc.description.abstract We show, in Hilbert space setting, that any two convex proper lower semicontinuous functions bounded from below, for which the norm of their minimal subgradients coincide, they coincide up to a constant. Moreover, under classic boundary conditions, we provide the same results when the functions are continuous and defined over an open convex domain. These results show that for convex functions bounded from below, the slopes provide sufficient first-order information to determine the function up to a constant, giving a positive answer to the conjecture posed in Boulmezaoud et al. (SIAM J Optim 28(3):2049-2066, 2018) .
dc.description.sponsorship ANID Chile under grant Fondecyt
dc.description.sponsorship ANID Chile under grant Fondecyt de Iniciacion
dc.relation.uri http://dx.doi.org/10.1007/s10107-020-01550-w
dc.subject Subdifferential determination
dc.subject Subgradient flows
dc.subject Moreau-Yosida approximation
dc.subject Dirichlet boundary condition
dc.subject Slope
dc.title Determination of convex functions via subgradients of minimal norm
dc.type Artículo
uoh.revista MATHEMATICAL PROGRAMMING
dc.identifier.doi 10.1007/s10107-020-01550-w
dc.citation.volume 190
dc.citation.issue 1-2
dc.identifier.orcid Perez-Aros, Pedro/0000-0002-8756-3011
uoh.indizacion Web of Science


Ficheros en el ítem

Ficheros Tamaño Formato Ver

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem


Colecciones


Archivos

Artículos

Tesis

Videos


Cuartiles