Repositorio Académico UOH

Bibliotecas Universidad de O'Higgins



Mostrar el registro sencillo del ítem

dc.contributor.author Zhang, JS
dc.contributor.author Verschae, R
dc.contributor.author Nobuhara, S
dc.contributor.author Lalonde, JF
dc.date.accessioned 2024-01-17T15:54:15Z
dc.date.available 2024-01-17T15:54:15Z
dc.date.issued 2018
dc.identifier.uri https://repositorio.uoh.cl/handle/611/426
dc.description.abstract Predicting the short-term power output of a photovoltaic panel is an important task for the efficient management of smart grids. Short-term forecasting at the minute scale, also known as nowcasting, can benefit from sky images captured by regular cameras and installed close to the solar panel. However, estimating the weather conditions from these images-sun intensity, cloud appearance and movement, etc.-is a very challenging task that the community has yet to solve with traditional computer vision techniques. In this work, we propose to learn the relationship between sky appearance and the future photovoltaic power output using deep learning. We train several variants of convolutional neural networks which take historical photovoltaic power values and sky images as input and estimate photovoltaic power in a very short term future. In particular, we compare three different architectures based on: a multi-layer perceptron (MLP), a convolutional neural network (CNN), and a long short term memory (LSTM) module. We evaluate our approach quantitatively on a dataset of photovoltaic power values and corresponding images gathered in Kyoto, Japan. Our experiments reveal that the MLP network, already used similarly in previous work, achieves an RMSE skill score of 7% over the commonly-used persistence baseline on the 1-min future photovoltaic power prediction task. Our CNN-based network improves upon this with a 12% skill score. In contrast, our LSTM-based model, which can learn the temporal dependencies in the data, achieves a 21% RMSE skill score, thus outperforming all other approaches.
dc.description.sponsorship NSERC Discovery Grant(Natural Sciences and Engineering Research Council of Canada (NSERC))
dc.description.sponsorship FRQ-NT REPARTI Strategic Network
dc.description.sponsorship Nvidia
dc.relation.uri http://dx.doi.org/10.1016/j.solener.2018.10.024
dc.subject Short term forecast
dc.subject Deep learning
dc.subject Neural networks
dc.subject Computer vision
dc.title Deep photovoltaic nowcasting
dc.type Artículo
uoh.revista SOLAR ENERGY
dc.identifier.doi 10.1016/j.solener.2018.10.024
dc.citation.volume 176
dc.identifier.orcid Lalonde, Jean-Francois/0000-0002-6583-2364
dc.identifier.orcid Verschae, Rodrigo/0000-0002-1661-3309
dc.identifier.orcid Nobuhara, Shohei/0000-0002-3204-8696
uoh.indizacion Web of Science


Ficheros en el ítem

Ficheros Tamaño Formato Ver

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem


Colecciones


Archivos

Artículos

Tesis

Videos


Cuartiles