Mostrar el registro sencillo del ítem
dc.contributor.author | Dey, SS | |
dc.contributor.author | Kazachkov, A | |
dc.contributor.author | Lodi, A | |
dc.contributor.author | Munoz, G | |
dc.date.accessioned | 2024-01-17T15:54:14Z | |
dc.date.available | 2024-01-17T15:54:14Z | |
dc.date.issued | 2022 | |
dc.identifier.uri | https://repositorio.uoh.cl/handle/611/417 | |
dc.description.abstract | Quadratically constrained quadratic programs (QCQPs) are optimization models whose remarkable expressiveness have made them a cornerstone of methodological research for non convex optimization problems. However, modern methods to solve a general QCQP fail to scale, encountering computational challenges even with just a few hundred variables. Specifically, a semi definite programming (SDP) relaxation is typically employed, which provides strong dual bounds for QCQPs but relies on memory-intensive algorithms. An appealing alternative is to replace the SDP with an easier-to-solve linear programming relaxation while still achieving strong bounds. In this work, we make advances toward achieving this goal by developing a computationally efficient linear cutting plane algorithm that emulates the SDP-based approximations of nonconvex QCQPs. The cutting planes are required to be sparse, in order to ensure a numerically attractive approximation, and efficiently computable. We present a novel connection between such sparse cut generation and the sparse principal component analysis problem in statistics, which allows us to achieve these two goals. We show extensive computational results advocating for the use of our approach. | |
dc.relation.uri | http://dx.doi.org/10.1137/21M1399956 | |
dc.subject | quadratically constrained quadratic programs | |
dc.subject | nonconvex optimization | |
dc.subject | sparse cutting planes | |
dc.subject | sparse principal component analysis | |
dc.title | Cutting plane generation through sparse principal component analysis | |
dc.type | Artículo | |
uoh.revista | SIAM JOURNAL ON OPTIMIZATION | |
dc.identifier.doi | 10.1137/21M1399956 | |
dc.citation.volume | 32 | |
dc.citation.issue | 2 | |
dc.identifier.orcid | Kazachkov, Aleksandr/0000-0002-4949-9565 | |
dc.identifier.orcid | Dey, Santanu/0000-0003-0294-8287 | |
dc.identifier.orcid | Munoz, Gonzalo/0000-0002-9003-441X | |
dc.identifier.orcid | LODI, ANDREA/0000-0001-9269-633X | |
uoh.indizacion | Web of Science |
Ficheros | Tamaño | Formato | Ver |
---|---|---|---|
No hay ficheros asociados a este ítem. |
El Repositorio Académico de la Universidad de O'Higgins es una plataforma de difusión documental que recopila, respalda y difunde la producción científica y académica de nuestra casa de estudios. En su interfaz, se integran diferentes tipos de documentos, tales como, libros, artículos académicos, investigaciones, videos, entre otros, los cuales pueden ser difundidos y utilizados con fines académicos y de investigación.
Los recursos contenidos en el repositorio son de libre acceso en texto completo, a excepción de aquellos que por restricciones propias del Derecho de Autor o por petición expresa de la autoría principal, no pueden ser difundidos en la condición mencionada.