Repositorio Académico UOH

Bibliotecas Universidad de O'Higgins



Mostrar el registro sencillo del ítem

dc.contributor.author Dey, SS
dc.contributor.author Kazachkov, A
dc.contributor.author Lodi, A
dc.contributor.author Munoz, G
dc.date.accessioned 2024-01-17T15:54:14Z
dc.date.available 2024-01-17T15:54:14Z
dc.date.issued 2022
dc.identifier.uri https://repositorio.uoh.cl/handle/611/417
dc.description.abstract Quadratically constrained quadratic programs (QCQPs) are optimization models whose remarkable expressiveness have made them a cornerstone of methodological research for non convex optimization problems. However, modern methods to solve a general QCQP fail to scale, encountering computational challenges even with just a few hundred variables. Specifically, a semi definite programming (SDP) relaxation is typically employed, which provides strong dual bounds for QCQPs but relies on memory-intensive algorithms. An appealing alternative is to replace the SDP with an easier-to-solve linear programming relaxation while still achieving strong bounds. In this work, we make advances toward achieving this goal by developing a computationally efficient linear cutting plane algorithm that emulates the SDP-based approximations of nonconvex QCQPs. The cutting planes are required to be sparse, in order to ensure a numerically attractive approximation, and efficiently computable. We present a novel connection between such sparse cut generation and the sparse principal component analysis problem in statistics, which allows us to achieve these two goals. We show extensive computational results advocating for the use of our approach.
dc.relation.uri http://dx.doi.org/10.1137/21M1399956
dc.subject quadratically constrained quadratic programs
dc.subject nonconvex optimization
dc.subject sparse cutting planes
dc.subject sparse principal component analysis
dc.title Cutting plane generation through sparse principal component analysis
dc.type Artículo
uoh.revista SIAM JOURNAL ON OPTIMIZATION
dc.identifier.doi 10.1137/21M1399956
dc.citation.volume 32
dc.citation.issue 2
dc.identifier.orcid Kazachkov, Aleksandr/0000-0002-4949-9565
dc.identifier.orcid Dey, Santanu/0000-0003-0294-8287
dc.identifier.orcid Munoz, Gonzalo/0000-0002-9003-441X
dc.identifier.orcid LODI, ANDREA/0000-0001-9269-633X
uoh.indizacion Web of Science


Ficheros en el ítem

Ficheros Tamaño Formato Ver

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem


Colecciones


Archivos

Artículos

Tesis

Videos


Cuartiles