Mostrar el registro sencillo del ítem
dc.contributor.author | Khanh, PD | |
dc.contributor.author | Nguyen, BT | |
dc.date.accessioned | 2024-01-17T15:54:12Z | |
dc.date.available | 2024-01-17T15:54:12Z | |
dc.date.issued | 2022 | |
dc.identifier.uri | https://repositorio.uoh.cl/handle/611/402 | |
dc.description.abstract | It is shown that the Moreau envelope of a convex lower semicontinuous function on a real Banach space with strictly convex dual is Frechet differentiable at every its minimizer, and continuously Frechet differentiable at every its non-minimizer satisfying that the dual space is uniformly convex at every norm one element around its normalized gradient vector at those points. As an application, we obtain the continuous Frechet differentiability of the Moreau envelope functions on Banach spaces with locally uniformly duals and the continuity of the corresponding proximal mappings provided that both primal and dual spaces are locally uniformly convex. | |
dc.description.sponsorship | Ho Chi Minh City University of Education Foundation for Science and Technology | |
dc.description.sponsorship | Vietnam National Foundation for Science and Technology Development (NAFOSTED)(National Foundation for Science & Technology Development (NAFOSTED)) | |
dc.relation.uri | http://dx.doi.org/10.1007/s10957-022-02126-8 | |
dc.subject | Strict convexity | |
dc.subject | Local uniform convexity | |
dc.subject | Frechet differentiability | |
dc.subject | Moreau envelope | |
dc.subject | Proximal mapping | |
dc.subject | Convex function | |
dc.title | Continuous Frechet Differentiability of the Moreau Envelope of Convex Functions on Banach Spaces | |
dc.type | Artículo | |
uoh.revista | JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS | |
dc.identifier.doi | 10.1007/s10957-022-02126-8 | |
dc.citation.volume | 195 | |
dc.citation.issue | 3 | |
uoh.indizacion | Web of Science |
Ficheros | Tamaño | Formato | Ver |
---|---|---|---|
No hay ficheros asociados a este ítem. |
El Repositorio Académico de la Universidad de O'Higgins es una plataforma de difusión documental que recopila, respalda y difunde la producción científica y académica de nuestra casa de estudios. En su interfaz, se integran diferentes tipos de documentos, tales como, libros, artículos académicos, investigaciones, videos, entre otros, los cuales pueden ser difundidos y utilizados con fines académicos y de investigación.
Los recursos contenidos en el repositorio son de libre acceso en texto completo, a excepción de aquellos que por restricciones propias del Derecho de Autor o por petición expresa de la autoría principal, no pueden ser difundidos en la condición mencionada.