Repositorio Académico UOH

Bibliotecas Universidad de O'Higgins



Mostrar el registro sencillo del ítem

dc.contributor.author Khanh, PD
dc.contributor.author Nguyen, BT
dc.date.accessioned 2024-01-17T15:54:12Z
dc.date.available 2024-01-17T15:54:12Z
dc.date.issued 2022
dc.identifier.uri https://repositorio.uoh.cl/handle/611/402
dc.description.abstract It is shown that the Moreau envelope of a convex lower semicontinuous function on a real Banach space with strictly convex dual is Frechet differentiable at every its minimizer, and continuously Frechet differentiable at every its non-minimizer satisfying that the dual space is uniformly convex at every norm one element around its normalized gradient vector at those points. As an application, we obtain the continuous Frechet differentiability of the Moreau envelope functions on Banach spaces with locally uniformly duals and the continuity of the corresponding proximal mappings provided that both primal and dual spaces are locally uniformly convex.
dc.description.sponsorship Ho Chi Minh City University of Education Foundation for Science and Technology
dc.description.sponsorship Vietnam National Foundation for Science and Technology Development (NAFOSTED)(National Foundation for Science & Technology Development (NAFOSTED))
dc.relation.uri http://dx.doi.org/10.1007/s10957-022-02126-8
dc.subject Strict convexity
dc.subject Local uniform convexity
dc.subject Frechet differentiability
dc.subject Moreau envelope
dc.subject Proximal mapping
dc.subject Convex function
dc.title Continuous Frechet Differentiability of the Moreau Envelope of Convex Functions on Banach Spaces
dc.type Artículo
uoh.revista JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS
dc.identifier.doi 10.1007/s10957-022-02126-8
dc.citation.volume 195
dc.citation.issue 3
uoh.indizacion Web of Science


Ficheros en el ítem

Ficheros Tamaño Formato Ver

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem


Colecciones


Archivos

Artículos

Tesis

Videos


Cuartiles