Repositorio Académico UOH

Bibliotecas Universidad de O'Higgins



Mostrar el registro sencillo del ítem

dc.contributor.author Seeger, A
dc.contributor.author Sossa, D
dc.date.accessioned 2024-01-17T15:54:11Z
dc.date.available 2024-01-17T15:54:11Z
dc.date.issued 2022
dc.identifier.uri https://repositorio.uoh.cl/handle/611/398
dc.description.abstract Determination of connected graphs is a fundamental theme of spectral graph theory. In this work, the task of separating a pair of connected graphs is done with the help of the spectral code function. The verb ''o separate is used here as a synonym of the verb to discriminate or to distinguish. By definition, the spectral code of a connected graph G is an eventually zero sequence Gamma(G) := (rho(1) (G); rho(2)(G); rho(3) (G). . .) whose kth term is the k-largest complementarity eigenvalue of the graph. The spectral code of a graph is a convenient vector representation of the so-called complementarity spectrum of the graph. The spectral code separation technique runs as follows: while comparing two connected graphs, say G and H, we start by considering rho(1), which is nothing but the spectral radius function; in case of equality rho(1) (G) = rho(1) (H), the second largest complementarity eigenvalue function rho(2) enters into action; in case of a new equality, we pass to rho(3), and so on. Complementarity eigenvalues perform more efficiently the separation role usually played by classical eigenvalues.
dc.description.sponsorship FONDECYT (Chile)(Comision Nacional de Investigacion Cientifica y Tecnologica (CONICYT)CONICYT FONDECYT)
dc.title Complementarity eigenvalues and graph determination
dc.type Artículo
uoh.revista AUSTRALASIAN JOURNAL OF COMBINATORICS
dc.citation.volume 84
uoh.indizacion Web of Science


Ficheros en el ítem

Ficheros Tamaño Formato Ver

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem


Colecciones


Archivos

Artículos

Tesis

Videos


Cuartiles