Repositorio Académico UOH

Bibliotecas Universidad de O'Higgins



Mostrar el registro sencillo del ítem

dc.contributor.author Jansen, K
dc.contributor.author Klein, KM
dc.contributor.author Verschae, J
dc.date.accessioned 2024-01-17T15:54:10Z
dc.date.available 2024-01-17T15:54:10Z
dc.date.issued 2020
dc.identifier.uri https://repositorio.uoh.cl/handle/611/385
dc.description.abstract Makespan scheduling on identical machines is one of the most basic and fundamental packing problems studied in the discrete optimization literature. It asks for an assignment of n jobs to a set of m identical machines that minimizes the makespan. The problem is strongly NP-hard, and thus we do not expect a (1 + epsilon)-approximation algorithm with a running time that depends polynomially on 1/epsilon. It has been recently shown that a subexponential running time on 1/epsilon would imply that the Exponential Time Hypothesis (ETH) fails. A long sequence of algorithms have been developed that try to obtain low dependencies on 1/epsilon, the better of which achieves a quadratic running time on the exponent. In this paper we obtain an algorithm with an almost-linear dependency on 1/epsilon in the exponent, which is tight under ETH up to logarithmic factors. Our main technical contribution is a new structural result on the configuration-IP integer linear program. More precisely, we show the existence of a highly symmetric and sparse optimal solution, in which all but a constant number of machines are assigned a configuration with small support. This structure can then be exploited by integer programming techniques and enumeration. We believe that our structural result is of independent interest and should find applications to other settings. We exemplify this by applying our structural results to the minimum makespan problem on related machines and to a larger class of objective functions on parallel machines. For all these cases, we obtain an efficient PTAS with running time with an almost-linear dependency on 1/epsilon and polynomial in n.
dc.description.sponsorship Deutsche Forschungsgemeinschaft(German Research Foundation (DFG))
dc.description.sponsorship Fondo Nacional de Desarrollo Cientifico y Tecnologico(Comision Nacional de Investigacion Cientifica y Tecnologica (CONICYT)CONICYT FONDECYT)
dc.relation.uri http://dx.doi.org/10.1287/moor.2019.1036
dc.subject scheduling
dc.subject approximation algorithms
dc.subject polynomial time approximation scheme
dc.subject makespan
dc.subject conditional lower bounds
dc.title Closing the Gap for Makespan Scheduling via Sparsification Techniques
dc.type Artículo
uoh.revista MATHEMATICS OF OPERATIONS RESEARCH
dc.identifier.doi 10.1287/moor.2019.1036
dc.citation.volume 45
dc.citation.issue 4
dc.identifier.orcid Verschae, Jose/0000-0002-2049-6467
uoh.indizacion Web of Science


Ficheros en el ítem

Ficheros Tamaño Formato Ver

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem


Colecciones


Archivos

Artículos

Tesis

Videos


Cuartiles