Repositorio Académico UOH

Bibliotecas Universidad de O'Higgins



Mostrar el registro sencillo del ítem

dc.contributor.author Moraga, C
dc.contributor.author Sanchez, E
dc.contributor.author Ferrarini, MG
dc.contributor.author Gutierrez, RA
dc.contributor.author Vidal, EA
dc.contributor.author Sagot, MF
dc.date.accessioned 2024-01-17T15:54:07Z
dc.date.available 2024-01-17T15:54:07Z
dc.date.issued 2022
dc.identifier.uri https://repositorio.uoh.cl/handle/611/361
dc.description.abstract MicroRNAs (miRNAs) are small noncoding RNAs that are key players in the regulation of gene expression. In the past decade, with the increasing accessibility of high-throughput sequencing technologies, different methods have been developed to identifymiRNAs, most of which rely on preexisting reference genomes. However, when a reference genome is absent or is not of high quality, such identification becomes more difficult. In this context, we developed BrumiR, an algorithm that is able to discovermiRNAs directly and exclusively from small RNA (sRNA) sequencing (sRNA-seq) data. We benchmarked BrumiR with datasets encompassing animal and plant species using real and simulated sRNA-seq experiments. The results demonstrate that BrumiR reaches the highest recall for miRNA discovery, while at the same time being much faster and more efficient than the state-of-the-art tools evaluated. The latter allows BrumiR to analyze a large number of sRNA-seq experiments, fromplants or animal species. Moreover, BrumiR detects additional information regarding other expressed sequences (sRNAs, isomiRs, etc.), thus maximizing the biological insight gained from sRNAseq experiments. Additionally, when a reference genome is available, BrumiR provides a new mapping tool (BrumiR2reference) that performs an a posteriori exhaustive search to identify the precursor sequences. Finally, we also provide a machine learning classifier based on a random forest model that evaluates the sequence-derived features to further refine the prediction obtained from the BrumiR-core. The code of BrumiR and all the algorithms that compose the BrumiR toolkit are freely available at https://github.com/c amoragaq/BrumiR.
dc.description.sponsorship CONICYT BECAS CHILE DOCTORADO
dc.description.sponsorship Agence National de Recherche(Agence Nationale de la Recherche (ANR))
dc.description.sponsorship Fondo Nacional de Desarrollo Cientifico y Tecnologico (FONDECYT)-ANID grants
dc.description.sponsorship ANID PCI-Redes Internacionales entre Centros de Investigacion grant
dc.description.sponsorship ANID-Millennium Science Initiative Program
dc.relation.uri http://dx.doi.org/10.1093/gigascience/giac093
dc.subject miRNA
dc.subject Algorithms
dc.subject de novo
dc.title BrumiR: A toolkit for de novo discovery of microRNAs from sRNA-seq data
dc.type Artículo
uoh.revista GIGASCIENCE
dc.identifier.doi 10.1093/gigascience/giac093
dc.citation.volume 11
dc.identifier.orcid Vidal, Elena/0000-0002-8208-7327
dc.identifier.orcid Cesbron-Delauw, Marie-France/0000-0003-4018-9306
dc.identifier.orcid Alvarez-Gutierrez, Rodrigo/0000-0001-5217-9979
dc.identifier.orcid Galvao Ferrarini, Mariana/0000-0002-9574-9991
uoh.indizacion Web of Science


Ficheros en el ítem

Ficheros Tamaño Formato Ver

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem


Colecciones


Archivos

Artículos

Tesis

Videos


Cuartiles