Repositorio Académico UOH

Bibliotecas Universidad de O'Higgins



Mostrar el registro sencillo del ítem

dc.contributor.author Verdugo, V
dc.contributor.author Verschae, J
dc.contributor.author Wiese, A
dc.date.accessioned 2024-01-17T15:54:07Z
dc.date.available 2024-01-17T15:54:07Z
dc.date.issued 2020
dc.identifier.uri https://repositorio.uoh.cl/handle/611/360
dc.description.abstract The sum of squares (SoS) hierarchy gives an automatized technique to create a family of increasingly tight convex relaxations for binary programs. There are several problems for which a constant number of rounds of this hierarchy give integrality gaps matching the best known approximation algorithms. For many other problems, however, ad-hoc techniques give better approximation ratios than SoS in the worst case, as shown by corresponding lower bound instances. Notably, in many cases these instances are invariant under the action of a large permutation group. This yields the question how symmetries in a formulation degrade the performance of the relaxation obtained by the SoS hierarchy. In this paper, we study this for the case of the minimum makespan problem on identical machines. Our first result is to show that omega(n) rounds of SoS applied over the configuration linear program yields an integrality gap of at least 1.0009, where n is the number of jobs. This improves on the recent work by Kurpisz et al. (Math Program 172(1-2):231-248, 2018) that shows an analogous result for the weaker LS+ {LS}_{+}$$\end{document} and SA hierarchies. Our result is based on tools from representation theory of symmetric groups. Then, we consider the weaker assignment linear program and add a well chosen set of symmetry breaking inequalities that removes a subset of the machine permutation symmetries. We show that applying 2O similar to(1/epsilon 2) rounds of the SA hierarchy to this stronger linear program reduces the integrality gap to 1+epsilon, which yields a linear programming based polynomial time approximation scheme. Our results suggest that for this classical problem, symmetries were the main barrier preventing the SoS/SA hierarchies to give relaxations of polynomial complexity with an integrality gap of 1+epsilon. We leave as an open question whether this phenomenon occurs for other symmetric problems.
dc.description.sponsorship Fondecyt Projects(Comision Nacional de Investigacion Cientifica y Tecnologica (CONICYT)CONICYT FONDECYT)
dc.description.sponsorship Conicyt(Comision Nacional de Investigacion Cientifica y Tecnologica (CONICYT))
dc.relation.uri http://dx.doi.org/10.1007/s10107-020-01511-3
dc.subject Makespan scheduling
dc.subject Polynomial optimization
dc.subject Approximation algorithms
dc.subject Symmetry breaking
dc.title Breaking symmetries to rescue sum of squares in the case of makespan scheduling
dc.type Artículo
uoh.revista MATHEMATICAL PROGRAMMING
dc.identifier.doi 10.1007/s10107-020-01511-3
dc.citation.volume 183
dc.citation.issue 1-2
dc.identifier.orcid Verdugo, Victor/0000-0003-0817-7356
dc.identifier.orcid Verschae, Jose/0000-0002-2049-6467
dc.identifier.orcid Verdugo, Victor/0000-0001-6353-3128
dc.identifier.orcid Wiese, Andreas/0000-0003-3705-016X
uoh.indizacion Web of Science


Ficheros en el ítem

Ficheros Tamaño Formato Ver

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem


Colecciones


Archivos

Artículos

Tesis

Videos


Cuartiles