Repositorio Académico UOH

Bibliotecas Universidad de O'Higgins



Mostrar el registro sencillo del ítem

dc.contributor.author Futalef, JP
dc.contributor.author Muñoz-Carpintero, D
dc.contributor.author Rozas, H
dc.contributor.author Orchard, ME
dc.date.accessioned 2024-01-17T15:54:00Z
dc.date.available 2024-01-17T15:54:00Z
dc.date.issued 2023
dc.identifier.uri https://repositorio.uoh.cl/handle/611/317
dc.description.abstract As environmental awareness grow, many organizations seek to implement Electric Vehicle (EV) fleets. Nonetheless, EVs' low driving ranges and high recharging times, and the limited Charging Stations (CS) availability make their management more challenging than conventional vehicles. The Electric Vehicle Routing Problem (E-VRP) tackles these challenges. However, many E-VRP variants drop relevant operational constraints, use overly simple models, or do not address route update solutions during operation. This work introduces a strategy to compute EV routes and update them according to observed traffic scenarios. By using an event-based EV state-space model, the strategy tracks relevant variables to account for multiple realistic elements, including nonlinear recharging function, partial recharging, mass-dependent energy consumption, maximum CS capacities, and timedependent travel times. First, an Offline E-VRP (Off-E-VRP) variant is solved to find initial route candidates. Then, routes are periodically updated during operation according to traffic and EV state measurements by solving an Online E-VRP (On-E-VRP) variant. Genetic Algorithms (GA) are implemented to solve the problems via novel encoding and genetic operators. Finally, simulation results show that the strategy enables the fleet to fulfil its delivery duties, the pre-operation stage provides adequate initial route candidates, and the online stage can improve performance and service quality. (c) 2023 Elsevier Inc. All rights reserved.
dc.description.sponsorship FONDECYT Chile(Comision Nacional de Investigacion Cientifica y Tecnologica (CONICYT)CONICYT FONDECYT)
dc.description.sponsorship Advanced Center for Electrical and Electronic Engineering, AC3E, Basal Project, ANID, Chile
dc.description.sponsorship ANID/PAI Convocatoria Nacional Subvencion a Instalacion en la Academia Convocatoria 2019
dc.description.sponsorship
dc.relation.uri http://dx.doi.org/10.1016/j.ins.2022.12.108
dc.subject Intelligent transportation
dc.subject Electric vehicles
dc.subject Genetic algorithms
dc.title An online decision-making strategy for routing of electric vehicle fleets q
dc.type Artículo
uoh.revista INFORMATION SCIENCES
dc.identifier.doi 10.1016/j.ins.2022.12.108
dc.citation.volume 625
dc.identifier.orcid Munoz-Carpintero, Diego/0000-0003-1194-4042
dc.identifier.orcid Futalef, Juan-Pablo/0000-0002-6917-3693
uoh.indizacion Web of Science


Ficheros en el ítem

Ficheros Tamaño Formato Ver

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem


Colecciones


Archivos

Artículos

Tesis

Videos


Cuartiles