Mostrar el registro sencillo del ítem
dc.contributor.author | Futalef, JP | |
dc.contributor.author | Muñoz-Carpintero, D | |
dc.contributor.author | Rozas, H | |
dc.contributor.author | Orchard, ME | |
dc.date.accessioned | 2024-01-17T15:54:00Z | |
dc.date.available | 2024-01-17T15:54:00Z | |
dc.date.issued | 2023 | |
dc.identifier.uri | https://repositorio.uoh.cl/handle/611/317 | |
dc.description.abstract | As environmental awareness grow, many organizations seek to implement Electric Vehicle (EV) fleets. Nonetheless, EVs' low driving ranges and high recharging times, and the limited Charging Stations (CS) availability make their management more challenging than conventional vehicles. The Electric Vehicle Routing Problem (E-VRP) tackles these challenges. However, many E-VRP variants drop relevant operational constraints, use overly simple models, or do not address route update solutions during operation. This work introduces a strategy to compute EV routes and update them according to observed traffic scenarios. By using an event-based EV state-space model, the strategy tracks relevant variables to account for multiple realistic elements, including nonlinear recharging function, partial recharging, mass-dependent energy consumption, maximum CS capacities, and timedependent travel times. First, an Offline E-VRP (Off-E-VRP) variant is solved to find initial route candidates. Then, routes are periodically updated during operation according to traffic and EV state measurements by solving an Online E-VRP (On-E-VRP) variant. Genetic Algorithms (GA) are implemented to solve the problems via novel encoding and genetic operators. Finally, simulation results show that the strategy enables the fleet to fulfil its delivery duties, the pre-operation stage provides adequate initial route candidates, and the online stage can improve performance and service quality. (c) 2023 Elsevier Inc. All rights reserved. | |
dc.description.sponsorship | FONDECYT Chile(Comision Nacional de Investigacion Cientifica y Tecnologica (CONICYT)CONICYT FONDECYT) | |
dc.description.sponsorship | Advanced Center for Electrical and Electronic Engineering, AC3E, Basal Project, ANID, Chile | |
dc.description.sponsorship | ANID/PAI Convocatoria Nacional Subvencion a Instalacion en la Academia Convocatoria 2019 | |
dc.description.sponsorship | ||
dc.relation.uri | http://dx.doi.org/10.1016/j.ins.2022.12.108 | |
dc.subject | Intelligent transportation | |
dc.subject | Electric vehicles | |
dc.subject | Genetic algorithms | |
dc.title | An online decision-making strategy for routing of electric vehicle fleets q | |
dc.type | Artículo | |
uoh.revista | INFORMATION SCIENCES | |
dc.identifier.doi | 10.1016/j.ins.2022.12.108 | |
dc.citation.volume | 625 | |
dc.identifier.orcid | Munoz-Carpintero, Diego/0000-0003-1194-4042 | |
dc.identifier.orcid | Futalef, Juan-Pablo/0000-0002-6917-3693 | |
uoh.indizacion | Web of Science |
Ficheros | Tamaño | Formato | Ver |
---|---|---|---|
No hay ficheros asociados a este ítem. |
El Repositorio Académico de la Universidad de O'Higgins es una plataforma de difusión documental que recopila, respalda y difunde la producción científica y académica de nuestra casa de estudios. En su interfaz, se integran diferentes tipos de documentos, tales como, libros, artículos académicos, investigaciones, videos, entre otros, los cuales pueden ser difundidos y utilizados con fines académicos y de investigación.
Los recursos contenidos en el repositorio son de libre acceso en texto completo, a excepción de aquellos que por restricciones propias del Derecho de Autor o por petición expresa de la autoría principal, no pueden ser difundidos en la condición mencionada.