Repositorio Académico UOH

Bibliotecas Universidad de O'Higgins



Mostrar el registro sencillo del ítem

dc.contributor.author Bucarey, V
dc.contributor.author Labbé, M
dc.contributor.author Morales, JM
dc.contributor.author Pineda, S
dc.date.accessioned 2024-01-17T15:53:59Z
dc.date.available 2024-01-17T15:53:59Z
dc.date.issued 2021
dc.identifier.uri https://repositorio.uoh.cl/handle/611/313
dc.description.abstract This paper proposes a polynomial-time algorithm to construct the monotone stepwise curve that minimizes the sum of squared errors with respect to a given cloud of data points. The fitted curve is also constrained on the maximum number of steps it can be composed of and on the minimum step length. Our algorithm relies on dynamic programming and is built on the basis that said curve-fitting task can be tackled as a shortest-path type of problem. Numerical results on synthetic and realistic data sets reveal that our algorithm is able to provide the globally optimal monotone stepwise curve fit for samples with thousands of data points in less than a few hours. Furthermore, the algorithm gives a certificate on the optimality gap of any incumbent solution it generates. From a practical standpoint, this piece of research is motivated by the roll-out of smart grids and the increasing role played by the small flexible consumption of electricity in the large-scale integration of renewable energy sources into current power systems. Within this context, our algorithm constitutes an useful tool to generate bidding curves for a pool of small flexible consumers to partake in wholesale electricity markets. (C) 2021 The Authors. Published by Elsevier Ltd.
dc.description.sponsorship European Research Council (ERC) under the European Union's Horizon2020research and innovation programme(European Research Council (ERC))
dc.description.sponsorship Spanish Ministry of Economy, Industry and Competitiveness(Spanish Government)
dc.description.sponsorship European Regional Development Fund (ERDF)(European Union (EU))
dc.description.sponsorship Fonds de la Recherche Scientifique -FNRS(Fonds de la Recherche Scientifique - FNRS)
dc.relation.uri http://dx.doi.org/10.1016/j.omega.2021.102516
dc.subject Cardinality-constrained shortest path problem
dc.subject Isotonic regression
dc.subject Segmented regression
dc.subject Consumers' price-response
dc.subject Inverse optimization
dc.subject Data clustering
dc.title An exact dynamic programming approach to segmented isotonic regression
dc.type Artículo
uoh.revista OMEGA-INTERNATIONAL JOURNAL OF MANAGEMENT SCIENCE
dc.identifier.doi 10.1016/j.omega.2021.102516
dc.citation.volume 105
dc.identifier.orcid Morales, Juan/0000-0002-9114-686X
dc.identifier.orcid Pineda, Salvador/0000-0002-1089-0970
dc.identifier.orcid Bucarey Lopez, Victor/0000-0002-3043-8404
uoh.indizacion Web of Science


Ficheros en el ítem

Ficheros Tamaño Formato Ver

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem


Colecciones


Archivos

Artículos

Tesis

Videos


Cuartiles