Mostrar el registro sencillo del ítem
dc.contributor.author | Bucarey, V | |
dc.contributor.author | Labbé, M | |
dc.contributor.author | Morales, JM | |
dc.contributor.author | Pineda, S | |
dc.date.accessioned | 2024-01-17T15:53:59Z | |
dc.date.available | 2024-01-17T15:53:59Z | |
dc.date.issued | 2021 | |
dc.identifier.uri | https://repositorio.uoh.cl/handle/611/313 | |
dc.description.abstract | This paper proposes a polynomial-time algorithm to construct the monotone stepwise curve that minimizes the sum of squared errors with respect to a given cloud of data points. The fitted curve is also constrained on the maximum number of steps it can be composed of and on the minimum step length. Our algorithm relies on dynamic programming and is built on the basis that said curve-fitting task can be tackled as a shortest-path type of problem. Numerical results on synthetic and realistic data sets reveal that our algorithm is able to provide the globally optimal monotone stepwise curve fit for samples with thousands of data points in less than a few hours. Furthermore, the algorithm gives a certificate on the optimality gap of any incumbent solution it generates. From a practical standpoint, this piece of research is motivated by the roll-out of smart grids and the increasing role played by the small flexible consumption of electricity in the large-scale integration of renewable energy sources into current power systems. Within this context, our algorithm constitutes an useful tool to generate bidding curves for a pool of small flexible consumers to partake in wholesale electricity markets. (C) 2021 The Authors. Published by Elsevier Ltd. | |
dc.description.sponsorship | European Research Council (ERC) under the European Union's Horizon2020research and innovation programme(European Research Council (ERC)) | |
dc.description.sponsorship | Spanish Ministry of Economy, Industry and Competitiveness(Spanish Government) | |
dc.description.sponsorship | European Regional Development Fund (ERDF)(European Union (EU)) | |
dc.description.sponsorship | Fonds de la Recherche Scientifique -FNRS(Fonds de la Recherche Scientifique - FNRS) | |
dc.relation.uri | http://dx.doi.org/10.1016/j.omega.2021.102516 | |
dc.subject | Cardinality-constrained shortest path problem | |
dc.subject | Isotonic regression | |
dc.subject | Segmented regression | |
dc.subject | Consumers' price-response | |
dc.subject | Inverse optimization | |
dc.subject | Data clustering | |
dc.title | An exact dynamic programming approach to segmented isotonic regression | |
dc.type | Artículo | |
uoh.revista | OMEGA-INTERNATIONAL JOURNAL OF MANAGEMENT SCIENCE | |
dc.identifier.doi | 10.1016/j.omega.2021.102516 | |
dc.citation.volume | 105 | |
dc.identifier.orcid | Morales, Juan/0000-0002-9114-686X | |
dc.identifier.orcid | Pineda, Salvador/0000-0002-1089-0970 | |
dc.identifier.orcid | Bucarey Lopez, Victor/0000-0002-3043-8404 | |
uoh.indizacion | Web of Science |
Ficheros | Tamaño | Formato | Ver |
---|---|---|---|
No hay ficheros asociados a este ítem. |
El Repositorio Académico de la Universidad de O'Higgins es una plataforma de difusión documental que recopila, respalda y difunde la producción científica y académica de nuestra casa de estudios. En su interfaz, se integran diferentes tipos de documentos, tales como, libros, artículos académicos, investigaciones, videos, entre otros, los cuales pueden ser difundidos y utilizados con fines académicos y de investigación.
Los recursos contenidos en el repositorio son de libre acceso en texto completo, a excepción de aquellos que por restricciones propias del Derecho de Autor o por petición expresa de la autoría principal, no pueden ser difundidos en la condición mencionada.