Repositorio Académico UOH

Bibliotecas Universidad de O'Higgins



Mostrar el registro sencillo del ítem

dc.contributor.author Gálvez, W
dc.contributor.author Grandoni, F
dc.contributor.author Ameli, AJ
dc.contributor.author Jansen, K
dc.contributor.author Khan, A
dc.contributor.author Rau, M
dc.date.accessioned 2024-01-17T15:53:57Z
dc.date.available 2024-01-17T15:53:57Z
dc.date.issued 2023
dc.identifier.uri https://repositorio.uoh.cl/handle/611/293
dc.description.abstract In the Strip Packing problem, we are given a vertical half-strip [0, W] x [0,+infinity) and a collection of open rectangles of width at most W. Our goal is to find an axis-aligned (non-overlapping) packing of such rectangles into the strip such that the maximum height OPT spanned by the packing is as small as possible. It is NP-hard to approximate this problem within a factor (3/2 - epsilon) for any constant epsilon > 0 by a simple reduction from the Partition problem, while the current best approximation factor for it is (5/3+epsilon). It seems plausible that Strip Packing admits a (3/2+ epsilon)-approximation. We make progress in that direction by achieving such tight approximation guarantees for a special family of instances, which we call skewed instances. As standard in the area, for a given constant parameter d > 0, we call large the rectangles with width at least dW and height at least dOPT, and skewed the remaining rectangles. If all the rectangles in the input are large, then one can easily compute the optimal packing in polynomial time (since the input can contain only a constant number of rectangles). We consider the complementary case where all the rectangles are skewed. This second case retains a large part of the complexity of the original problem; in particular, the skewed case is still NP-hard to approximate within a factor (3/2- epsilon), and we provide an (almost) tight (3/2 + epsilon)-approximation algorithm.
dc.description.sponsorship ANID via Subvencion a la Instalacion Academica
dc.description.sponsorship SNSF Excellence Grant(Swiss National Science Foundation (SNSF))
dc.description.sponsorship Swiss National Science Foundation (SNF)(Swiss National Science Foundation (SNSF))
dc.relation.uri http://dx.doi.org/10.1007/s00453-023-01130-2
dc.subject Strip packing
dc.subject Rectangle packing
dc.subject Approximation algorithms
dc.title A Tight (3/2+ε)-Approximation for Skewed Strip Packing
dc.type Artículo
uoh.revista ALGORITHMICA
dc.identifier.doi 10.1007/s00453-023-01130-2
dc.citation.volume 85
dc.citation.issue 10
dc.identifier.orcid Galvez, Waldo/0000-0002-6395-3322
uoh.indizacion Web of Science


Ficheros en el ítem

Ficheros Tamaño Formato Ver

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem


Colecciones


Archivos

Artículos

Tesis

Videos


Cuartiles