Repositorio Académico UOH

Bibliotecas Universidad de O'Higgins



Mostrar el registro sencillo del ítem

dc.contributor.author Sun, T.
dc.contributor.author Álvarez-Novoa, F.
dc.contributor.author Andrade, K.
dc.contributor.author Gutiérrez, P.
dc.contributor.author Gordillo, L.
dc.contributor.author Cheng, X.
dc.date.accessioned 2022-09-20T12:41:59Z
dc.date.available 2022-09-20T12:41:59Z
dc.date.issued 2022
dc.identifier.uri https://repositorio.uoh.cl/handle/611/27
dc.description.abstract Drop impact causes severe surface erosion, dictating many important natural, environmental and engineering processes and calling for substantial prevention and preservation efforts. Nevertheless, despite extensive studies on the kinematic features of impacting drops over the last two decades, the dynamic process that leads to the drop-impact erosion is still far from clear. Here, we develop a method of high-speed stress microscopy, which measures the key dynamic properties of drop impact responsible for erosion, i.e., the shear stress and pressure distributions of impacting drops, with unprecedented spatiotemporal resolutions. Our experiments reveal the fast propagation of self-similar noncentral stress maxima underneath impacting drops and quantify the shear force on impacted substrates. Moreover, we examine the deformation of elastic substrates under impact and uncover impact-induced surface shock waves. Our study opens the door for quantitative measurements of the impact stress of liquid drops and sheds light on the origin of low-speed drop-impact erosion. en_US
dc.format.extent 8p.
dc.language.iso en
dc.title Stress distribution and surface shock wave of drop impact
dc.type Artículo
uoh.instituto Ciencias de la Ingeniería
uoh.revista Nature Communications
dc.identifier.doi 10.1038/s41467-022-29345-x

 

Exportar datos



Compartir



Código QR

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem


Colecciones


Archivos

Artículos

Tesis

Videos


Cuartiles