dc.contributor.author | Maldonado, C | |
dc.contributor.author | Mora-Poblete, F | |
dc.contributor.author | Echeverria, C | |
dc.contributor.author | Baettig, R | |
dc.contributor.author | Torres-Díaz, C | |
dc.contributor.author | Contreras-Soto, RI | |
dc.contributor.author | Heidari, P | |
dc.contributor.author | Lobos, GA | |
dc.contributor.author | do Amaral, AT | |
dc.date.accessioned | 2024-01-17T15:53:54Z | |
dc.date.available | 2024-01-17T15:53:54Z | |
dc.date.issued | 2022 | |
dc.identifier.uri | https://repositorio.uoh.cl/handle/611/275 | |
dc.description.abstract | Studying population structure has made an essential contribution to understanding evolutionary processes and demographic history in forest ecology research. This inference process basically involves the identification of common genetic variants among individuals, then grouping the similar individuals into subpopulations. In this study, a spectral-based classification of genetically differentiated groups was carried out using a provenance-progeny trial of Eucalyptus cladocalyx. First, the genetic structure was inferred through a Bayesian analysis using single-nucleotide polymorphisms (SNPs). Then, different machine learning models were trained with foliar spectral information to assign individual trees to subpopulations. The results revealed that spectral-based classification using the multilayer perceptron method was very successful at classifying individuals into their respective subpopulations (with an average of 87% of correct individual assignments), whereas 85% and 81% of individuals were assigned to their respective classes correctly by convolutional neural network and partial least squares discriminant analysis, respectively. Notably, 93% of individual trees were assigned correctly to the class with the smallest size using the spectral data-based multi-layer perceptron classification method. In conclusion, spectral data, along with neural network models, are able to discriminate and assign individuals to a given subpopulation, which could facilitate the implementation and application of population structure studies on a large scale. | |
dc.description.sponsorship | ANID, FONDECYT | |
dc.relation.uri | http://dx.doi.org/10.3390/rs14122898 | |
dc.subject | convolutional neural network | |
dc.subject | multilayer perceptron | |
dc.subject | population genetic structure | |
dc.subject | remote sensing classification | |
dc.subject | sugar gum | |
dc.title | A Neural Network-Based Spectral Approach for the Assignment of Individual Trees to Genetically Differentiated Subpopulations | |
dc.type | Artículo | |
uoh.revista | REMOTE SENSING | |
dc.identifier.doi | 10.3390/rs14122898 | |
dc.citation.volume | 14 | |
dc.citation.issue | 12 | |
dc.identifier.orcid | Contreras-Soto, Rodrigo/0000-0001-6468-9394 | |
dc.identifier.orcid | Heidari, Parviz/0000-0003-4716-0143 | |
dc.identifier.orcid | do Amaral, Antônio Teixeira/0000-0003-4831-7878 | |
dc.identifier.orcid | Lobos, Gustavo/0000-0002-0874-4309 | |
dc.identifier.orcid | Baettig, Ricardo/0000-0003-3891-4898 | |
dc.identifier.orcid | Echeverria, Cristian/0000-0001-6456-6431 | |
dc.identifier.orcid | Torres Diaz, Cristian/0000-0002-5741-5288 | |
uoh.indizacion | Web of Science |
Files | Size | Format | View |
---|---|---|---|
There are no files associated with this item. |
The Academic Repository of the University of O'Higgins is a documentary dissemination platform that collects, supports and disseminates the scientific and academic production of our university. In its interface, different types of documents are integrated, such as books, academic articles, research, videos, among others, which can be disseminated and used for academic and research purposes.
The resources contained in the repository are freely accessible in full text, except for those that due to restrictions of Copyright or by express request of the main author, cannot be disseminated in the aforementioned condition.