dc.contributor.author | López-Cortés, XA | |
dc.contributor.author | Matamala, F | |
dc.contributor.author | Maldonado, C | |
dc.contributor.author | Mora-Poblete, F | |
dc.contributor.author | Scapim, CA | |
dc.date.accessioned | 2024-01-17T15:53:53Z | |
dc.date.available | 2024-01-17T15:53:53Z | |
dc.date.issued | 2020 | |
dc.identifier.uri | https://repositorio.uoh.cl/handle/611/266 | |
dc.description.abstract | Analysis of population genetic variation and structure is a common practice for genome-wide studies, including association mapping, ecology, and evolution studies in several crop species. In this study, machine learning (ML) clustering methods, K-means (KM), and hierarchical clustering (HC), in combination with non-linear and linear dimensionality reduction techniques, deep autoencoder (DeepAE) and principal component analysis (PCA), were used to infer population structure and individual assignment of maize inbred lines, i.e., dent field corn (n = 97) and popcorn (n = 86). The results revealed that the HC method in combination with DeepAE-based data preprocessing (DeepAE-HC) was the most effective method to assign individuals to clusters (with 96% of correct individual assignments), whereas DeepAE-KM, PCA-HC, and PCA-KM were assigned correctly 92, 89, and 81% of the lines, respectively. These findings were consistent with both Silhouette Coefficient (SC) and Davies-Bouldin validation indexes. Notably, DeepAE-HC also had better accuracy than the Bayesian clustering method implemented in InStruct. The results of this study showed that deep learning (DL)-based dimensional reduction combined with ML clustering methods is a useful tool to determine genetically differentiated groups and to assign individuals into subpopulations in genome-wide studies without having to consider previous genetic assumptions. | |
dc.description.sponsorship | Chilean National Fund for Scientific and Technological Development (FONDECYT)(Comision Nacional de Investigacion Cientifica y Tecnologica (CONICYT)CONICYT FONDECYT) | |
dc.description.sponsorship | Program of International Cooperation (PCI-CONICYT) | |
dc.relation.uri | http://dx.doi.org/10.3389/fgene.2020.543459 | |
dc.subject | deep learning | |
dc.subject | genome-wide studies | |
dc.subject | machine learning | |
dc.subject | single-nucleotide polymorphisms | |
dc.subject | dimensionality reduction | |
dc.title | A Deep Learning Approach to Population Structure Inference in Inbred Lines of Maize | |
dc.type | Artículo | |
uoh.revista | FRONTIERS IN GENETICS | |
dc.identifier.doi | 10.3389/fgene.2020.543459 | |
dc.citation.volume | 11 | |
dc.identifier.orcid | scapim, carlos/0000-0002-7047-9606 | |
dc.identifier.orcid | lopez cortes, xaviera/0000-0002-7514-8777 | |
uoh.indizacion | Web of Science |
Files | Size | Format | View |
---|---|---|---|
There are no files associated with this item. |
The Academic Repository of the University of O'Higgins is a documentary dissemination platform that collects, supports and disseminates the scientific and academic production of our university. In its interface, different types of documents are integrated, such as books, academic articles, research, videos, among others, which can be disseminated and used for academic and research purposes.
The resources contained in the repository are freely accessible in full text, except for those that due to restrictions of Copyright or by express request of the main author, cannot be disseminated in the aforementioned condition.