Mostrar el registro sencillo del ítem
dc.contributor.author | Gowda, MS | |
dc.contributor.author | Sossa, D | |
dc.date.accessioned | 2024-01-17T15:56:17Z | |
dc.date.available | 2024-01-17T15:56:17Z | |
dc.date.issued | 2019 | |
dc.identifier.uri | https://repositorio.uoh.cl/handle/611/979 | |
dc.description.abstract | Given a closed convex cone C in a finite dimensional real Hilbert space H, a weakly homogeneous map fC -> H is a sum of two continuous maps h and g, where h is positively homogeneous of degree gamma (>= 0) on C and g(x)=o( | |
dc.description.abstract | x | |
dc.description.abstract | gamma) as | |
dc.description.abstract | x | |
dc.description.abstract | ->infinity in C. Given such a map f, a nonempty closed convex subset K of C, and a q is an element of H, we consider the variational inequality problem, VI(f,K,q), of finding an x is an element of K such that f(x)+q,x-x >= 0 for all x is an element of K. In this paper, we establish some results connecting the variational inequality problem VI(f,K,q) and the cone complementarity problem CP(f infinity,K infinity,0), where f infinity:=h is the homogeneous part of f and K infinity is the recession cone of K. We show, for example, that VI(f,K,q) has a nonempty compact solution set for every q when zero is the only solution of CP(f infinity,K infinity,0) and the (topological) index of the map x?x-Pi K infinity(x-G(x)) at the origin is nonzero, where G is a continuous extension of f infinity to H. As a consequence, we generalize a complementarity result of Karamardian(J Optim Theory Appl 19:227-232, 1976) formulated for homogeneous maps on proper cones to variational inequalities. The results above extend some similar results proved for affine variational inequalities and for polynomial complementarity problems over the nonnegative orthant in Rn. As an application, we discuss the solvability of nonlinear equations corresponding to weakly homogeneous maps over closed convex cones. In particular, we extend a result of Hillar and Johnson (Proc Am Math Soc 132:945-953, 2004) on the solvability of symmetric word equations to Euclidean Jordan algebras. | |
dc.description.sponsorship | Fondecyt(Comision Nacional de Investigacion Cientifica y Tecnologica (CONICYT)CONICYT FONDECYT) | |
dc.relation.uri | http://dx.doi.org/10.1007/s10107-018-1263-7 | |
dc.subject | Variational inequality problem | |
dc.subject | Weakly homogeneous map | |
dc.subject | Complementarity problem | |
dc.subject | Degree | |
dc.subject | Word equation | |
dc.title | Weakly homogeneous variational inequalities and solvability of nonlinear equations over cones | |
dc.type | Artículo | |
uoh.revista | MATHEMATICAL PROGRAMMING | |
dc.identifier.doi | 10.1007/s10107-018-1263-7 | |
dc.citation.volume | 177 | |
dc.citation.issue | 1-2 | |
uoh.indizacion | Web of Science |
Ficheros | Tamaño | Formato | Ver |
---|---|---|---|
No hay ficheros asociados a este ítem. |
El Repositorio Académico de la Universidad de O'Higgins es una plataforma de difusión documental que recopila, respalda y difunde la producción científica y académica de nuestra casa de estudios. En su interfaz, se integran diferentes tipos de documentos, tales como, libros, artículos académicos, investigaciones, videos, entre otros, los cuales pueden ser difundidos y utilizados con fines académicos y de investigación.
Los recursos contenidos en el repositorio son de libre acceso en texto completo, a excepción de aquellos que por restricciones propias del Derecho de Autor o por petición expresa de la autoría principal, no pueden ser difundidos en la condición mencionada.