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Abstract

In this research, we study a variant of the classical paging problem that incorporates diversity
constraints. To solve the variant, we formulate a linear problem which can be efficiently
rounded without increasing the cost of the solution, providing a efficient way to solve the
offline problem, where the results were validated through numerical simulations even for
more general settings. Finally, for the online case, we study marking algorithms and their
competitive ratio against the optimal algorithm.
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Resumen

En ésta investigación estudiamos una variante del problema clásico de paging que incorpora
restricciones de diversidad. Para resolver dicha variante, formulamos un problema lineal que
puede ser redondeado de manera eficiente sin incrementar el costo de la solución, entregando
una manera eficiente de resolver el problema para el caso offline, donde los resultados fueron
validados a través de simulaciones numéricas incluso para casos mas generales. Finalmente,
para el caso online, estudiamos algoritmos de marking y su ratio competitivo versus el
algoritmo óptimo.
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Espero te sientas orgulloso papá.
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Chapter 1

Introduction

1.1 Getting Started

In the realm of computer science, there exists a complex problem known as the paging
problem. This problem arises in a computer system that is equipped with two distinct types
of memory: a smaller, faster cache memory, and a larger, slower main memory. The system
receives a sequence of page requests that need to be displayed. However, to display a page,
it must be present in the cache memory. If it is not, a page already in the cache must be
evicted, which incurs a cost for the transfer.

The goal of the paging problem is to devise a policy that minimizes the total number
of evictions, thereby satisfying the page requirements dictated by the sequence. This in-
triguing problem was first introduced by Sleator and Tarjan in 1985 [12], who proposed a
policy to address it. Since then, the problem has been extensively studied, with numerous
variants being explored. These variants consider different models of request arrivals and the
information available to the decision-maker. See, for instance, the survey from Irani [9].

In many real-world scenarios, such as logistics and memory management, pages are not
just arbitrary data but are categorized into broader classes or types. This thesis aims to
incorporate an additional dimension into the paging problem: diversity. We would like to
add this in order to maintain a fair representation of the universe of requests in the cache.
For example, if we are working with rapid access memory (RAM) in a PC, we would like to
keep a navigator, a folder explorer instance and a document processor in memory; this way,
we preserve processes covering different tasks.

Therefore, this project seeks to address the paging problem with a dual focus: minimizing
cost while maintaining a cache that is diverse in terms of page types. This adds a layer of
complexity to the problem, making it a compelling subject for exploration and study.
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Chapter 1. Introduction 1.2. Our Results

Furthermore, the concept of diversity in the paging problem opens up an entire world of
research opportunities. It could lead to the development of new algorithms that balance cost
and diversity. It could also pave the way for a deeper understanding of how diversity impacts
system performance. Moreover, the findings from this project could have implications beyond
the paging problem, potentially influencing other areas of computer science where diversity
plays a crucial role. This project, therefore, stands at the intersection of theoretical computer
science and practical system design, aiming to contribute valuable insights to both fields.

Through this study we are relying in an important part of practical implementations. So
we can observe and investigate further on the notions given by the numerical implementa-
tions. This practical part was implemented in Python using Google Colab as the environment
to work in, many algorithms and attempts were proved wrong by this computed solutions,
and many work has been done building code.

We represent a solution to a given instance by showing the fast access memory (cache) at
each iteration of the algorithm, this means, we explore the schedules built for each method.
The amount of iterations is defined through all this study as the length of the sequence as we
define what is called reduced schedules shown in section 3.3, it can be seen that some instances
will require less iterations or ”changes” and still be optimal because on some iterations the
cache is not modified.

The optimal schedule does often prefer to eliminate pages that are not worth keeping,
even if doing this does not decrease the cost, assuming the restriction used is keeping at most
k pages on cache and not limiting the solution to have a full cache at all times, this results
interesting as it shows that there are moments where the pages stored that are necessary are
less than k, and that there are some iterations that require the cache to be full and some
that do not.

1.2 Our Results

The primary objective of the project is to understand the challenges involved in constructing
effective paging solutions that also maintain a rich and diverse cache. Achieving this balance
is crucial for optimizing performance and ensuring fairness across different applications.
Below, we outline the specific goals and expected outcomes of our research.

We study the impact of incorporating diversity constraints on the quality of solutions
obtained by various classic models and algorithms.

We also analyze how diversity measures, particularly the well-known richness diversity
indices [10], affect the performance of traditional paging algorithms. By integrating these
measures, we expect to observe improvements in the balance and fairness of resource al-
location, leading to more robust and equitable solutions. This provides insights into the

2
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trade-offs between maintaining diversity and achieving optimal paging performance. Also,
we investigate the complexity of the paging problem with diversity constraints, focusing on
both hardness and approximation results.

We define computational boundaries of this enriched paging problem, identifying that
it does not fall into the NP-hard category, and explore the feasibility of polynomial time
algorithms. By establishing these complexity results, we got a better understanding of the
limitations and potential of various algorithmic approaches, guiding future research and
development efforts.

We develop effective solutions using both linear programming and combinatorial ap-
proaches.

• Linear programs: We formulate linear programs that incorporate diversity constraints,
enabling us to solve the paging problem to optimality. These linear programs serve
as benchmarks for evaluating the performance of heuristic and algorithmic solutions.
By reaching optimal schedules through these formulations, we set a high standard for
practical implementations.

• Algorithms: We design and implement algorithms that are not only optimal but also
efficient in terms of runtime. These algorithms perform well within a reasonable time
frame, making them practical for real-world applications. We explore various heuristic
and exact approaches to achieve this goal, finally developing a novel algorithm that
leverages the unique structure of the problem.

We design competitive algorithms for the online variant of the paging problem, where
page requests are revealed incrementally over time. These algorithms make effective paging
decisions in real-time, adapting to new requests as they arrive. These algorithms are evalu-
ated based on their competitive ratios, comparing their performance to the optimal offline
solutions.

These results conclude in significant implications for various fields, including computer
science, logistics, and resource management. By enhancing our understanding of diversity
in paging problems and developing advanced algorithms to address these challenges, we can
improve the efficiency and fairness of systems that rely on dynamic resource allocation.

1.3 Related Work

We first study the classical paging problem to review on the well-known results for this
problem. For this purpose, we rely pretty much on the survey of competitive paging [9],
where we can check on various interesting definitions and results.

3
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The classical paging problem involves managing a cache of fixed size k to minimize the
number of page faults. In the offline setting, the entire sequence of page requests is known
in advance, allowing for optimal decisions to be made.

The optimal offline paging algorithm, also known as the Longest Forward Distance (LFD)
algorithm, is a theoretical algorithm that always makes the best possible decision in terms of
minimizing page faults. LFD algorithm evicts the page that has the longest forward distance,
based on the complete knowledge of the page request sequence, this means that to evict a
page, the algorithm looks at the sequence and evicts the page that is the last to be requested
among pages in the cache. This algorithm was first introduced by Belady [3].

On the other hand, the online variant issues the problem when the sequence is totally
unknown, which means that we do not know what pages are going to be requested in the
future. There also exist semi-online problems, where just some part of information about
the sequence is unknown.

There are lower bounds on the competitive ratio for certain classes of deterministic paging
algorithms in the worst-case scenario. These bounds help establish the difficulty of designing
highly competitive algorithms.

For the online setting we highlight the following results:

• Deterministic algorithms: There are multiple deterministic algorithms that have been
developed to solve the online paging problem, each with its strengths and limitations.

– First-In-First-Out (FIFO) Algorithm: This is a simple and widely used
deterministic algorithm that evicts the oldest page in the cache when a page fault
occurs. While easy to implement, FIFO may suffer from the ”Belady’s Anomaly,”
where increasing the number of page frames (cache size) results in an increase in
the number of page faults for a given memory access pattern.

– Least Recently Used (LRU) Algorithm: Another algorithm used commonly
approximates the optimal offline algorithm by evicting the least recently used page
when a page fault occurs. LRU is known for its good performance in capturing
temporal locality but can be challenging to implement efficiently due to its need
of tracking accessed pages.

Both of these algorithms were shown by Sleator and Tarjan [12] to be worse than
the optimal offline algorithm by a factor of k, but not more, this means they are
k-competitive.
There is also introduced the so called Marking algorithms (which fall under the de-
terministic algorithms family), along with these, it is stated that any method in this
family of algorithms is k-competitive[9].

4
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It is fundamental to describe what this family of algorithms look like for this problem.
As an analogue of the classic paging problem marking algorithms, we later study the
marking algorithms for diverse paging.

Definition 1.1 (Marking algorithm) We define a marking algorithm for the diversity
constrained variant as follows:

1. Marking. Every time a page is requested, it gets marked.
2. Serving. If the requested page is not in cache, some unmarked page is removed

to make space for the request.
3. End of a phase. If the requested page is not in cache and every page is marked,

we finish the current phase, erase all the marks and start a new phase.

Notice that now a phase can end either because k pages were marked, or because the
removal of any unmarked page would violate the diversity constraint. This implies
that there is no lower bound on the number of pages requested by phase, but it is
still possible to prove that marking algorithms are O(k)-competitive, which is the best
possible for deterministic online algorithms due to the existing lower bound for classical
online paging [12]. This proof can be found on the section 3.6.3.

• Randomized algorithms: In addition to deterministic algorithms, there are randomized
algorithms designed to address the challenges of the online paging variant. These
consist in choosing randomly which page to evict under certain case criteria.

– Random Replacement Algorithm: It is natural to develop an algorithm that
uniformly at random chooses which page to evict, so we use a random process to
discard pages. While simple and easy to implement, its performance is analyzed in
expectation, and it may not guarantee strong worst-case bounds. This algorithm
has a competititve ratio of k. [9]

There is also the randomized marking type of algorithm, which simply evicts an arbi-
trary non-marked page on the serving stage. [9]

There are various important variants of the paging problem, each adding different com-
plexities and considerations. Below, we describe some of the most significant ones.

• Weighted Paging: The key difference in this variant is that pages have weights
associated with them, meaning some pages are more costly to evict than others. In
weighted paging, each page is assigned a numerical weight reflecting its importance or
eviction cost. The goal is to minimize not only the total number of page faults but
instead the weighted cost of these faults. This variant introduces an additional layer
of complexity, as the algorithm needs to balance the importance of pages with their
associated weights.
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Weighted paging is particularly relevant in scenarios where not all pages contribute
equally to the overall performance or cost, and optimizing for weighted page faults
becomes critical for efficient resource management. For instance, in a web server envi-
ronment, frequently accessed resources might be assigned higher weights due to their
impact on user experience. Effective strategies for weighted paging ensure that high-
cost pages are evicted less frequently, thereby optimizing overall system performance,
using LRU in weighted paging guarantees a O(k) competitive ratio. For a deeper dive
into this topic, refer to works such as [2].

• Multi-Server Paging: This variant involves more than one server (cache), where
pages are distributed across these servers, incurring some cost for moving them. In the
multi-server paging problem, the presence of multiple independent servers introduces
a spatial dimension to the caching challenge. The algorithm must decide how to
distribute pages among different servers, considering factors such as server capacities,
communication costs, and the overall goal of minimizing the total cost associated with
page faults. For this variant, LRU takes the name of distributed LRU, which guarantees
a competitive ratio of O(s · k) [13], where s is the number of servers, while there is
a more efficient way described as Work Function algorithm, achieving a competitive
ratio of O(k). [14]
This variant is common in distributed systems and content delivery networks (CDNs),
where multiple caching servers enhance scalability and responsiveness. Efficient strate-
gies for redistributing pages among servers while accounting for the associated costs
are crucial in optimizing the performance of such multi-server environments. These
strategies need to ensure that the most frequently accessed pages are placed on the
most appropriate servers, reducing latency and balancing the load across the network.

• Min-Max: The Min-Max variant of the paging problem focuses on minimizing the
maximum number of times any page is not in cache when requested. Unlike traditional
paging, which aims to minimize the total number of page faults or weighted faults,
Min-Max paging seeks to ensure that the page faults are distributed evenly among the
requests. This approach is particularly useful in scenarios where faults can damage the
pages or their access speed. For this variant, every algorithm is Ω(log n)-competitive.
Min-Max paging is relevant in real-time systems and mission-critical applications where
predictable performance is crucial. The algorithm must be designed to handle the
worst-case sequence efficiently, ensuring that the maximum cost incurred by any page is
minimized. This often involves robust and adaptive strategies that can cope with a wide
range of request patterns, providing consistent performance under varying conditions.
This is studied in works such as [5].

• Paging with succinct predictions: This study is based on learning-augmented
paging from the perspective of requiring the least possible amount of predicted infor-
mation. More specifically, the predictions obtained along- side each page request are
limited to one bit only. They consider two natural such setups:

6
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– Discard predictions, in which the predicted bit denotes whether or not it is “safe”
to evict the page.

– Phase predictions, where the bit denotes whether the current page will be re-
quested in the next phase (for an appropriate partitioning of the input into
phases).

The authors of [1] develop algorithms for each of the two setups that satisfy all three
desirable properties of learning-augmented algorithms – that is, they are consistent,
robust and smooth – despite being limited to a one-bit prediction per request. They
also present lower bounds establishing that the algorithms presented are essentially best
possible, they also establish that there is no deterministic algorithm with a competitive
ratio smaller than O(log k).

1.3.1 Diversity

As it is for diversity, there are multiple notions based on different measures that will be
chosen based on the requirements of the setting. Some types of diversity are:

• Richness: Richness is one of the most straightforward measures of diversity. It simply
counts the number of different categories or species present in a dataset or solution.
For this measure, we demand a particular minimum number of species, denoted as:

S∑
i=1

1[pi > 0] ≥ δ

Where S is the total number of species, δ is the required minimum of total species
present and pi is the proportion of individuals belonging to the i-th species. While
richness does not consider the rarity of species or other more complex demands, it
ensures a basic level of diversity by maintaining a minimum number of distinct cate-
gories. This measure is often used in ecological studies to assess biodiversity, and in
our context, it ensures a baseline variety in the pages kept in memory or items stored
in inventory.

• Shannon Index The Shannon Index, also known as Shannon-Wiener or Shannon-
Weaver Index, is a more sophisticated measure of diversity. It takes into account both
richness (the number of different species) and evenness (the distribution of individuals
across species). The Shannon Index is calculated as:

H ′ = −
S∑

i=1

pi ln (pi)

7
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This index is widely used in various fields, from ecology to computer science, to quantify
the uncertainty or entropy in a dataset. In the context of paging, using the Shannon
Index can help ensure not only a variety of pages but also a balanced distribution,
avoiding scenarios where a few categories dominate the cache.

• Group Fairness: Group Fairness introduces both lower and upper bounds on the
representation of each species or category in a solution. This means we set constraints
to ensure that no species is underrepresented or overrepresented, this can be expressed
as:

Li ≤ pi ≤ Ui ∀i ∈ S

Where Li and Ui are the lower and upper bounds tied to the number of species respec-
tively. In the context of paging, this can be used to maintain a balanced representation
of different types of pages, preventing scenarios where some pages are evicted too fre-
quently while others are kept in memory excessively. Group Fairness ensures equitable
access and representation, making it particularly useful in scenarios where fairness
across groups is a priority.
A slight relaxation of this variant has been considered in the context of Paging, known
as Paging with reserve constraints [8]. Where the authors present a 2-approximation
algorithm for the offline case, while for the online setup, they develop an O(log(k))-
competitive fractional algorithm, and then show how to convert it online to a random-
ized integral algorithm with the same guarantee.

• Hill Numbers: Hill Numbers represent a family of diversity indices that generalize
traditional diversity measures like species richness and Shannon entropy. Denoted as
Dq where q is a positive real number, Hill Numbers provide a parameterized way to
measure diversity, emphasizing the contribution of rare species. The formula for Hill
Numbers is:

Dq =

(
S∑

i=1

pqi

)1/(1−q)

Different values of q result in different diversity measures

– q = 0 corresponds to richness (number of species)
– q = 1 corresponds to the exponential of Shannon entropy, which balances richness

and evenness.
– q = 2 corresponds to the inverse of Simpson’s index, which gives more weight to

common species.

Hill Numbers allow for flexibility in emphasizing different aspects of diversity. In the
context of paging, this could be used to adjust the balance between maintaining a
variety of pages and ensuring that frequently used pages are adequately represented.

8
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Some of these notions can be found on earlier works as [10]. This can be implemented
on combinatorial algorithms, leading to different solutions and leveraging the absence of
diversity to gain an advantage.

Some relevant results in this field are:

• Diversity helps prevent premature convergence to suboptimal solutions. By introducing
and maintaining diverse solutions in the population, algorithms are less likely to get
stuck in local optimal, enabling continued exploration for better solutions.

• A direct implication from adding diversity to a combinatorial problem is that as we
are adding more constraints, we will be working on a direct subset of the non-diverse
solutions, leading to enhanced solution finding. But this could make the optimal
algorithm be more ”difficult” to build.

• Algorithms that solve diversity requirements are more likely to adapt to the difficulty of
the optimization problem. They can dynamically adjust their search strategies based
on the complexity of the problem, leading to improved performance on challenging
instances.

1.3.2 Paging with Diversity Constraints

While there are few work on paging with diversity constraints, we have got enough results
of both fields in order to get tools to facilitate the building of a mix-up of both aspects.

It results that a new line of research has begun to investigate how to incorporate Hill
diversity notions into classical combinatorial optimization problems[11, 7]. This emerging
field of study could provide valuable insights and methodologies that could be applied to the
proposed inclusion of diversity for the paging problem, as they could be homologated to our
researches.

As well as Hill’s has been incorporated, there are papers such as [8] which are applying
restrictions on the paging problem that can be seen as diversity measures, particularly to
the reserves notion. So it will also be fundamental to complement their work with our
investigation, and we hope to have some findings that could be useful on this area of research.

1.4 Applications

The paging problem, while originally formulated in the context of computer memory man-
agement, has a broad range of applications in various real-world scenarios. Here, we explore

9
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some of these contexts, highlighting how the principles of paging and cache management can
be effectively applied to optimize performance and efficiency.

1. Memory management: As the problem is defined, its application to computer mem-
ory management is straightforward and crucial. Key scenarios include:

• Operating Systems: In modern operating systems, efficient memory manage-
ment is critical. Paging algorithms help in deciding which pages to keep in the
faster, but limited, RAM and which to store in slower disk storage. By optimiz-
ing these decisions, operating systems can significantly improve performance and
responsiveness.

• Application Performance: For applications that handle large datasets or per-
form complex computations, effective paging ensures that frequently accessed
data remains readily available, reducing latency and improving user experience.

• Database Systems: Databases often manage vast amounts of data, and efficient
caching strategies are essential to ensure quick access to frequently queried data,
thereby enhancing overall performance.

2. Logistics: The principles of the paging problem extend naturally to various logistical
operations, where managing resources efficiently is paramount.

• Retail Inventory Management: In a supermarket, shelves serve as the fast
memory with limited space, while warehouses act as slow memory with larger
capacity. The cost here is associated with transporting items between these two
locations. An effective paging strategy can help ensure that high-demand items
are readily available on shelves, reducing restocking times and improving customer
satisfaction.

• Supply Chain Management: In broader supply chain operations, managing
the storage and transportation of goods across multiple locations can benefit from
paging algorithms. These algorithms can help in deciding which items to keep in
transit or in regional warehouses to optimize delivery times and reduce costs.

• E-commerce Fulfillment: For online retailers, deciding which items to keep
in fulfillment centers (fast memory) versus central warehouses (slow memory)
is critical. Efficient paging strategies can minimize shipping times and costs,
enhancing the overall customer experience.

3. Network Caching: In the realm of computer networks, the paging problem is highly
relevant for managing data caches:

• Content Delivery Networks (CDNs): CDNs cache web content at various
locations to reduce latency and bandwidth usage. Efficient paging algorithms
ensure that the most frequently accessed content is available close to the end
users, improving load times and reducing server load.

10
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• Web Browsers: Browsers cache web pages and resources to speed up loading
times for frequently visited sites. Effective cache management strategies, derived
from paging principles, can significantly enhance browsing experience by reducing
redundant network requests.

4. Cloud Computing: In cloud computing environments, resource management is a
critical aspect that can benefit from paging algorithms:

• Virtual Machine (VM) Management: Cloud providers often need to manage
the allocation of VMs across physical servers. Efficient paging strategies can help
in deciding which VMs to keep active on faster resources and which to migrate
or hibernate, optimizing performance and resource utilization.

• Data Storage and Access: Cloud storage solutions manage large datasets
across different tiers of storage with varying speeds and costs. Paging algorithms
can help in deciding which data to keep on high-speed storage and which to
archive, balancing cost and performance effectively.

Additionally, results such as bounds, measures of algorithm competitiveness and even
dual problem findings can be useful to acquire deeper understanding of the problem’s intri-
cacies.

11



Chapter 2

Preliminaries

2.1 Paging Problem

In this section, we review the paging problem as it is defined in the literature and we include
our own modeling.

2.1.1 Classical Paging Model

The classic paging problem is defined as follows:

1. Parameters:

• k corresponds to the length of the fast memory (cache).
• m is the number of total pages.
• n corresponds to the total number of iterations.
• σ is defined by a sequence {σ1, σ2, . . . , σn} of page requests.

2. Variables:

• pj is the page requested on iteration j.
• xi,j is a binary variable set to 1 if the page is in cache on iteration j and zero

otherwise.
• fj is a binary variable that captures the cost of each iteration.

12
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3. Linear program:

min
n∑

j=0

fj

s.t xpj ,j = 1 ∀j ∈ [0, . . . , n]
m∑
i=0

xi,j = k ∀j ∈ [0, . . . , n]

fj ≥ 1− xpj ,j−1 ∀j ∈ [1, . . . , n]

xi,j ∈ {0, 1} ∀i ∈ [0, . . . ,m], ∀j ∈ [0, . . . , n]

fj ∈ {0, 1} ∀j ∈ [0, . . . , n]

2.1.2 Our Model

We model the classical paging problem in a different way respect to the previous literature,
based on a perspective that looks into the objective function as a basic concept that ends
being a maximum that we had to linearize. The problem is defined as follows:

1. Variables:

• pj will be the page requested on iteration j.
• xi,j is a binary variable that is 1 if the page i is on iteration j and zero if not.
• fi,j is the cost of the page i on the iteration j.

2. Constraints:

(a) First, we have to limit the amount of pages we can have in cache to k, so we
apply the following constraint

m∑
i=1

xi,j = k

Over every iteration.
(b) Next we need to satisfy the requests, naturally we would add

xpj ,j = 1

But since we are looking for a complementary slackness formulation, so we add
the following:

xpj ,j ≤ 1

−xpj ,j ≤ −1
For every iteration.

13



Chapter 2. Preliminaries 2.1. Paging Problem

(c) We linealize the objective function from

fi,j = max{0, xi,j − xi,j−1}

So we need to add the corresponding constraints in order to get a linear problem,

0 ≤ fi,j

xi,j − xi,j−1 − fi,j ≤ 0

For every page and iteration.
(d) For the first iteration we need to count the first pages

xi,1 − fi,1 ≤ 0

(e) Finally we add the non-negative constraint to xi,j and fi,j.

0 ≤ xi,j

0 ≤ fi,j

For every page and iteration.

3. Objective: As the classic paging problem is defined, we count as cost just the faults,
so the objective will be ∑

j

fpj ,j

this is just counting the cost of the pages in the sequence on the iteration they are
needed, which means we only focus on the requests, and the linearization we stated
previously prevents −1 values from appearing in the objective.

4. Lp relaxation:

min
∑
j

fpj ,j (2.1)

s.t
m∑
i=1

xi,j = k ∀j ∈ [n]

xpj ,j ≤ 1 ∀j ∈ [n]

− xpj ,j ≤ −1 ∀j ∈ [n]

xi,j − xi,j−1 − fi,j ≤ 0 ∀i ∈ [m], ∀j(n ≥ j > 1)

xi,1 − fi,1 ≤ 0 ∀i ∈ [m]

xi,j, fi,j ≥ 0 ∀i ∈ [m], ∀j ∈ [n]

14



Chapter 2. Preliminaries 2.2. Diversity Constraints

2.2 Diversity Constraints

We add the variable yt,j which will be 1 if the color t is present in the cache on iteration j
and zero otherwise.

Known diversity approaches: As it was described previously, there are multiple types
of diversity that have been studied. We will focus mainly on the following three.

• Richness: This notion could be said to be the most simple, it requires to have a
minimum total of different types, so it does not ensure the conservation of species. Let
δ be the minimum number of different species required through the solution, and let
yt,j be a binary variable such as it takes the value of 1 if category t is present in the
solution at time j and 0 otherwise. With this in mind, we can provide the following
constraint:

−
∑
t

yt,j ≤ −δ

This models the requirement needed.

• Reserves: Unlike Richness, this notion has more control over each specie, this because
we are asking to have at least certain number of a kind individually for every type.
Take µt as the minimum number of elements of type t that need to be present during
all the solution, then this can be formulated as

µt ≤
∑

i of color t

xi,j

• Group Fairness: This is an extension of Reserves that apart from the lower bounds,
it adds upper bounds to each specie, so it prevents having a great number of elements
of the same kind. Assume dt is the maximum number allowed of the same type t, then
we can formulate this notion with two parts.

µt ≤
∑

i of color t

xi,j

−dt ≤ −
∑

i of color t

xi,j

2.3 Paging with Richness Constrains

In the diverse paging problem with richness requirements, an instance is described as follows.
We have n ∈ N number of iterations or periods, and m pages P = {p1, p2, . . . , pm}. The
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value σj is the page requested at iteration j ∈ [n]. There are q ∈ N different types, and each
page is of a unique type t ∈ [q]. The set Pt ⊆ {p1, . . . , pm} contains the pages of type t, and
P1, . . . ,Pq is a partition of P . The cache size is k ∈ N, and δ ∈ N is the richness parameter.

A schedule for the problem is represented by a sequence S1, . . . , Sn ⊆ {p1, . . . , pm} where
Sj is the cache configuration at iteration j, and represents the pages in the cache at that
moment. The schedule is feasible if the following properties hold:

1. (Paging) For every iteration j ∈ [n], we have σj ∈ Sj, and |Sj| = k.

2. (Richness) For every iteration j ∈ [n], we have |{t ∈ [q] : Sj ∩ Pt ̸= ∅}| ≥ δ.

Condition 1 states the same requirements for the classic paging problem: at every iteration,
the page requested must be in the cache, and the number of stored pages in the cache is
exactly k. Condition 2 summarizes the diversity requirement: at every iteration, the total
number of types present in the cache is at least δ. The schedule cost is the total number of
times a page is added to the cache, namely,

∑n
j=2 |Sj \ Sj−1|+ |S1|, which also accounts for

the number of page faults since |S1| = k. We denote by cost(S) the cost of a schedule S,
and our goal is to find the feasible schedule of minimum cost, that is,

min
{

cost(S) : S is a schedule satisfying 1 and 2
}
. (2.2)

We call problem (2.2) the k-server formulation of the diverse paging problem.

Constraints: We formulate the paging problem with richness constraints by including
3 new constraints to our formulation of the classical problem, which are:

1. We have to satisfy the richness diversity measure, so we apply the following constraint,

−
∑
t

yt,j ≤ −δ

Where this t is the color, we use this for every color and iteration.

2. Now we need to link the y and x variables, so we add

yt,j −
∑

i of color t

xi,j ≤ 0

This will ensure that:

• We can’t have a yt,j value of 1 if there is no page of that color t in the cache.
• We have yt,j to be at least 1 if there is some page of that color.

This applies for all colors and iterations.
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3. We are not interested in yt,j taking values greater than 1, as we define this variable to
be the binary representation of the presence of the color. So we add

yt,j ≤ 1

for all iterations and colors.

4. Finally, we need yt,j to be non-negative for every color and iteration.

Linear relaxation: For the main model we use, the objective function accounts the
initial cache in a different way than the first model we constructed, this makes the problem
less constrained.

min
m∑
i=1

n∑
j=2

fi,j +
m∑
i=1

xi,1 (2.3)

s.t
m∑
i=1

xi,j = k ∀j ∈ [n]

xpj ,j ≤ 1 ∀j ∈ [n]

− xpj ,j ≤ −1 ∀j ∈ [n]

−
∑
t

yt,j ≤ −δ ∀t ∈ [q], ∀j ∈ [n]

yt,j −
∑

i of color t

xi,j ≤ 0 ∀t ∈ [q], ∀j ∈ [n]

xi,j − xi,j−1 ≤ fi,j ∀i ∈ [m], ∀j(n ≥ j > 1)

xi,j, yi,j, fi,j ≥ 0 ∀i ∈ [m], ∀j ∈ [n]

Reserves model: The below corresponds to the formulation of the paging problem with
the memory reserve restrictions instead of using the richness measure.
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min
m∑
i=1

n∑
j=2

fi,j +
m∑
i=1

xi,1 (2.4)

s.t
m∑
i=1

xi,j ≤ k ∀j ∈ [n]

xpj ,j ≤ 1 ∀j ∈ [n]

− xpj ,j ≤ −1 ∀j ∈ [n]

µt ≤
∑

i of color t

xi,j ∀t ∈ [q], ∀j ∈ [n]

yt,j −
∑

i of color t

xi,j ≤ 0 ∀t ∈ [q], ∀j ∈ [n]

0 ≤ fi,j ∀i ∈ [m], ∀j ∈ [n]

xi,j − xi,j−1 − fi,j ≤ 0 ∀i ∈ [m], ∀j(n ≥ j > 1)

xi,j, fi,j ≥ 0 ∀i ∈ [m], ∀j ∈ [n]

First, we start by noticing that (2.3) defines the relaxation of its integer counterpart [IPδ]
(defined by giving binary values to the variables xi,j and yt,j).

Lemma 2.1 For every instance of the diverse paging problem, the following holds:

1. For every feasible schedule S, there exists an integer solution (x, y, f) that is feasible
for (2.3), and such that cost(S) =

∑n
j=2

∑m
i=1 fi,j +

∑m
i=1 xi,1.

2. For every integer feasible solution (x, y, f) of (2.3), there exists a feasible schedule S
such that cost(S) ≤

∑n
j=2

∑m
i=1 fi,j +

∑m
i=1 xi,1.

In particular, the value of the k-server formulation (2.3) is equal to the optimal value of its
integer counterpart.

Proof. Consider a schedule S, and we define x as follows: for every j ∈ [n], let xi,j = 1 for
every page pi ∈ Sj, and zero otherwise. Condition 1 guarantees that x satisfies the first,
second and third constraints in (2.3). For every j ∈ [n] and every type t ∈ [q], let yt,j =
min{1,

∑
i:i∈Pt

xi,j} = min{1, |Sj ∩ Pt|}. The sixth constraint is satisfied by construction,
and condition 2 implies that

q∑
t=1

yt,j =

q∑
t=1

min{1, |Sj ∩ Pt|} = |{t ∈ [q] : Sj ∩ Pt ̸= ∅}| ≥ δ,
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that is, the fifth constraint is also satisfied. Finally, for every j ∈ {2, . . . , n} and every i ∈ [m],
let fi,j = max{xi,j − xi,j−1, 0}. In particular, the fourth constraint, and non-negativity, is
satisfied, and furthermore, we have

∑n
j=2 |Sj \Sj−1|+ |S1| =

∑n
j=2

∑m
i=1 fi,j+

∑m
i=1 xi,1. This

proves 1.

Consider a feasible integer solution (x, y, f) in (2.3), and for each iteration j ∈ [n], let
Sj = {pi ∈ P : xi,j = 1}. The first, second and third constraints in (2.3) guarantee that the
sequence S1, . . . , Sn meets condition 1.

By the fifth constraint, the size of Qj = {t ∈ [q] : yt,j = 1} is at least δ, and since∑
i:pi∈Pt

xi,j = |Sj ∩ Pt|, by the sixth constraint, we have Sj ∩ Pt ̸= ∅ for every t ∈ Qj,
which implies |{t ∈ [q] : Sj ∩ Pt ̸= ∅}| = |Qj| ≥ δ. Then, condition 2 is satisfied, and
S is a feasible schedule. By construction, for every j ∈ {2, . . . , n} and i ∈ [m], we have
fi,j ≥ max{xi,j − xi,j−1, 0} = |Sj \ Sj−1|, thus cost(S) ≤

∑n
j=2

∑m
i=1 fi,j +

∑m
i=1 xi,1. This

proves 2.

We will use the following theorems as a base to prove some of our base results:

Theorem 2.2 Let A ∈ Rm×n. If A is totally unimodular, then

P = {x ∈ Rn : Ax ≤ b, x ≥ 0} is integral ∀b ∈ Zm

Theorem 2.3 (Ghouila-Houri) A ∈ Rm×n is totally unimodular if and only if for every
subset of the rows R ⊆ [m], there is a partition R = R1 ∪R2 such that for every j ∈ [n]∑

i∈R1

Ai,j −
∑
i∈R2

Ai,j ∈ {−1, 0, 1}

2.4 Integral Paging Formulation

2.4.1 Total Unimodularity of the Classical Problem

An important result we got is that we have found an integer formulation for the paging
problem. We state the following:

Theorem 2.4 The formulation shown in (2.3) without richness constraints is integer.
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Proof. Let us label the restrictions:

min
m∑
i=1

n∑
j=2

fi,j +
m∑
i=1

xi,1

s.t xpj ,j ≤ 1 ∀j ∈ [n] (2.5)
− xpj ,j ≤ −1 ∀j ∈ [n] (2.6)
m∑
i=1

xi,j ≤ k, and −
m∑
i=1

xi,j ≤ −k ∀j ∈ [n] (2.7)

xi,j − xi,j−1 − fi,j ≤ 0 ∀i ∈ [m], ∀j(n ≥ j > 1) (2.8)

For this proof, we will use Theorem 2.3.

Let us define R as an arbitrary set of constraints. If we check the rows corresponding to
our LP, we will see that the constraints (2.5) and (2.6) have only one non-zero coordinate
which is either 1 or −1, hence, we can always assign them to one required partition R1

or R2 in a consistent way after partitioning constraints (2.7) and (2.8). Meanwhile, the
columns corresponding to fi,j have only one non-zero coordinate each, which is a −1, so
they do not play a role when partitioning the rows. Furthermore, every extreme point of 2.3
is also an extreme point of the LP where we replace the first constraint by

∑m
i=1 xi,j ≤ k.

Therefore, by this observations, we can restrict ourselves to analyzing the following matrix,
which corresponds to the first family in (2.7) and (2.8) restricted to the variables xi,j:

−1 0 . . . 0 1 0 . . . 0
0 −1 . . . 0 0 1 . . . 0

0 0
. . . 0 0 0

. . . 0
0 0 . . . −1 0 0 . . . 1

−1 0 . . . 0 1 0 . . . 0
0 −1 . . . 0 0 1 . . . 0

0 0
. . . 0 0 0

. . . 0
0 0 . . . −1 0 0 . . . 1

1 1 1 1

1 1 1 1

1 1 1 1

. . . 0

0 . . . . . . 0

0 . . .

0 . . . 0

0 . . . 0
... ... . . . ...
0 0 . . .


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Let A(i,j), with i ∈ {1, . . . , n − 1} and j ∈ {1, . . . , n}, denote the sub-matrix induced by
the rows (i − 1)n + 1, . . . , in − 1 and columns (j − 1)n + 1, . . . , jn − 1. Observe that the
sub-matrices with non-zero coordinates are all of the form A(i,i), which are negative identity
matrices, and A(i,i+1), which are identity matrices. After that, we have n rows representing
(2.8).

Consider now the rows corresponding to constraints (2.8) from top to bottom. We will
prove by induction on i ∈ {1, . . . , n − 1} the following: the rows from R among the first
jn rows of the matrix can receive signs so that, for any j ≤ i, the sum of the columns
i(n− 1)+ 1, . . . , in− 1 together with the corresponding row in (2.8) is in {−1, 0, 1}, and the
entries in A(j,j+1) multiplied by the already assigned signs are either all non-negative or all
non-positive. This way, we can conclude that the system is totally unimodular thanks to the
Ghoulia-Houri theorem, and thus (2.3) is integral.

In the base case j = 1, if the first row in (2.8) is in R, we fix the signs of rows defining
block A(1,1) so that they cancel out with the ones in (2.8); if the first row in (2.8) is not in
R, then we give any sign (but the same) to every row in block A(1, 1) and the property is
satisfied.

For the inductive step, assume that so far the first kn rows have signs so that the
hypothesis is fulfilled. If the (k + 1)-th row in (2.8) is not in R, we can assign signs to
rows kn + 1, . . . , (k + 1)n − 1 in R so that they cancel out with previous rows in A(k,k+1)

if needed, and since the entries of A(k,k+1) are all non-negative (resp. non-positive), we can
give signs to the remaining rows so that the entries in A(k+1,k+2) are all either non-negative
or non-positive. On the other hand, if the (k+1)-th row in (2.8) is in R, we first give a sign
to that row so that it cancels out with block A(k,k+1); since the entries in the block were all
non-negative (resp. non-positive), the sum of the rows in A(k,k+1) and the row from (2.8) with
its corresponding sign will all be non-positive (resp. non-negative), and then we can proceed
the same way as in the previous case to give signs to rows kn + 1, . . . , (k + 1)n − 1 in R.
Finally, for block A(n−1,n), we give a sign to the n-th row of (2.8) to cancel out with that block
(which is either all non-negative or non-positive thanks to the previous construction).

2.4.2 Total Unimodularity of the Richness Problem

We prove that the formulation (2.3) does not satisfy total unimodularity:

Proof. Consider an instance of diverse paging with richness parameter δ = 2, three requests,
and three pages divided into two types. The rows corresponding to the first, third, and fifth
sets of constraints in (2.3), restricted to variables xi,j, define the following matrix:
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

-1 0 0 1 0 0

0 -1 0 0 1 0
0 0 −1 0 0 1

-1 0 0 1 0 0
0 −1 0 0 1 0

0 0 -1 0 0 1
−1 0 0
0 −1 −1

−1 0 0

0 -1 -1
−1 0 0
0 −1 −1

1 1 1 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0

0 0 0 0 0 0 1 1 1

0

0

0 0

0 0

0 0


To conclude, we use the following theorem by Camion [4]: A matrix with coefficients

in {−1, 0, 1} is totally unimodular if and only if the sum of the elements in each Eulerian1

square submatrix is a multiple of 4. The proposition follows since the submatrix defined
by the gray non-zero coordinates in the matrix above is Eulerian but the total sum of its
coordinates is 2.

2.5 Algorithms

We know that there is a LP for finding an optimal integer solution, so the next step is to
explore and build an algorithm for finding optimal solutions in a reasonable time.

2.5.1 Introduction to Algorithms

We want to solve (2.3) with an algorithm, we suspect there must be a way to solve the
problem in a reasonable time (polynomial) via an algorithm different than those used by
linear program solving optimizers, so first we explore some natural extensions of the Belady’s
algorithm[3] which we will be calling LFD to include diversity constraints, specifically richness
notions, as this algorithm runs in polynomial time, it makes sense that a variant could also
work in this case.

1A matrix is Eulerian if each row and each column has even sum.
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This leaded us to develop an algorithm (CLFD) which at a first glance, seemed to reach
the optimal solutions, but was unable to optimally solve every instance of the problem, it
failed under specific circumstances.

With this in mind, we made another algorithm (CELFD) which reached optimal solutions
for that cases where CLFD failed. Sadly, it failed where CLFD was optimal, and there is
no way of easily differentiating the cases where each one reaches the best solution to make
a composed algorithm that chooses the best one for every instance.

Nonetheless, we show both algorithms we explore practically and the instances where
they fail.

2.5.2 CLFD

First, we took the classic paging algorithm and we redefine it to handle diversity in the most
natural way. We call it CLFD (Colored Longest Forward Distance), and the difference is
that doing LFD as we know it, may break diversity. To fix this, we establish the algorithm
can’t evict pages that break diversity at each iteration, this results in an algorithm that
guarantees not breaking diversity at any point at the cost of optimality.
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Algorithm 1 CLFD
Require: xi0, yt0, c0
Ensure: x, y, c or infeasible instance

j ← 1
for j ≤ n do

xij ← xij−1 ▷ We start the iteration with the last cache
if xpjj ̸= 1 then ▷ if the request is not in cache

xpjj ← 1
for i such that xij = 1 do ▷ For each page in cache

if xij ̸= xpjj then ▷ If it isn’t the page we loaded
if evicting page i breaks diversity then

if it is the last option then
return infeasible instance

else
continue

else
if page i is not in sequence then ▷ Remove page i

xij ← 0
if there are no other pages of the same color then

ytij ← 0

else
if i is the LDF page among the cache then ▷ Remove page i

xij ← 0
if there are no other pages of the same color then

ytij ← 0

else
continue

j ← j + 1

As it was expressed, it fails under certain cases. This due to taking a different path than
the optimal does because at some point it evicts a different page, making that at some point
later it is limited to not evict the page the optimal replaces to preserve diversity. We present
the proof with an example of an instance where it fails.

As our results showed that we failed to build an optimal algorithm, we state the following:

Lemma 2.5 CLFD is not optimal.
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Proof. Assume the following instance:

σ = cdefdgcfe

m = 5

n = 9

k = 3

δ = 2

Where c, f, g have color 0 and d, e have color 1. Then, we have to pay 3 for the first three
pages cde. From this point, the optimal algorithm and CLFD start making different changes.

c

CLFD

d e 3

c f d +1

c g d +1

c f d +1

c f e +1

c

OPT

d e 3

f d e +1

f g e +1

c f e +1

We can see CLFD generates a cost of 7, while the optimal algorithm costs 6. Repeating
this sequence increments the cost by 4/3.

With this proof, we discard the idea that this variation of LFD could be our desired
approach, although it doesn’t have a much elevated cost than the optimal, it is not what we
are looking for.

Since this kind of instances are problematic for our algorithm, we explore a different
approach which is more complex and sophisticated with the hope that we can find our
desired result.
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2.6 Examples

In the following plot, we can see both the solution of the linear problem presented, and an
algorithm called CELFD, which turned out to be the worst performing algorithm that we
explored. There is consistency between both graphs, making that the number of iterations
shown on the left also corresponds to the number of the iteration at all times in the second
plot. The colors are ordered and correspond to the page shown, with this in mind, we can
have an idea of the richness of the solution by only looking at the colors displayed. The cost
of each solution is shown next to the name of the solution method. For this pair of schedules,
the instance associated corresponds to the following:

• Cache size k = 6

• Total number of colors q = 4

• Number of pages m = 10

• Number of iterations n = 50

• Minimum colors at each iteration δ = 4

• Sequence σ = 90679037742087513506295664472452737960903234853587

Although it seems like a pretty particular instance, where it has a long sequence and a good
variety of pages and colors, this is where interesting things start to happen, so it is a more
general presentation rather than a small instance.
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Figure 2.1: On the left, we have the optimal schedule for the instance presented, where the colors of each
page are represented by the colors of the blocks, and the page is represented with the number inside the
rectangle. The initial cache is on the bottom, while the final cache is on top, above this, we can see the
cost for the algorithm. On the right, we have the schedule for the CELFD algorithm, with the same plot
structure.
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Chapter 3

Offline Paging with Richness
Constraints

3.1 Linear programs

We explore the idea of linear programs applied to our problem, a pretty important part of
this research is based exactly on this concept.

In this section and the problem in general, we will be using linear programs (LPs) to de-
scribe our problem due to this being the most easy and useful way, apart from the advantages
we currently have to find solutions for this kind of problems.

We found that (2.3) falls under an integer set of solutions, so this concept will be partic-
ularly useful for our research.

We call a linear solution subset the family of solutions that emerge from a linear program,
which is characterized by the absence of non-linear equations. This subset is particularly
valuable because it can be calculated in a reasonable time frame, offering a significant com-
putational advantage over non-linear solutions. Linear programming techniques leverage the
simplicity and structure of linear relationships, enabling the use of efficient algorithms such
as the simplex method (not in worst-case scenario) or interior-point methods. These algo-
rithms are capable of handling large-scale problems with numerous variables and constraints,
providing solutions quickly and reliably. By solving the LP, we can retrieve a solution from
this subset.

The linear solution subset is not only computationally efficient but also offers a degree
of predictability and stability that is often absent in non-linear programming. Non-linear
equations can introduce complexities such as multiple local minima, non-convex regions,
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and sensitivity to initial conditions, all of which can complicate the search for an optimal
solution. In contrast, linear programming ensures that if a solution exists, it will be found
on the boundary of the feasible region, and this solution will be globally optimal.

Moreover, the linear solution subset is highly applicable across various domains, includ-
ing operations research, economics, engineering, and logistics. Problems such as resource
allocation, production planning, transportation, and network flow can often be modeled ef-
fectively using linear programming. By focusing on linear solutions, we can simplify these
complex problems and develop robust, scalable solutions that are practical for real-world
implementation.

We call an integer solution subset the family of solutions that arise from solving an integer
program, where the decision variables are constrained to take on only integer values. This
subset is crucial in many real-world applications where solutions must be discrete rather
than continuous. Despite the additional complexity introduced by these integer constraints,
modern algorithms and computational techniques have made it possible to calculate this
subset in a reasonable time for many practical problems.

Integer programming combines the linear relationships of traditional linear programming
with the added requirement that some or all variables be integers. This requirement intro-
duces a combinatorial aspect to the problem, often making it more challenging to solve than
its linear counterpart. However, advancements in algorithms, such as branch and bound,
branch and cut, and cutting planes, have significantly improved our ability to solve integer
programs efficiently.

The integer solution subset is particularly valuable because it aligns with the nature of
many real-world problems. In scenarios such as scheduling, where tasks must be assigned to
time slots, or in logistics, where goods must be transported in whole units, solutions must
be integers to be meaningful and implementable. Integer programming ensures that these
discrete requirements are met, providing practical and actionable solutions.

While the computational complexity of integer programming is generally higher than
that of linear programming, recent developments in computational power and algorithmic
strategies have made it feasible to solve large-scale integer programs within acceptable time
frames. Techniques such as heuristic methods, metaheuristics (like genetic algorithms and
simulated annealing), and advanced exact algorithms have further enhanced the efficiency
and effectiveness of finding optimal integer solutions.

Moreover, the integer solution subset offers several advantages, including the ability to
model and solve problems with binary decisions (e.g., yes/no decisions) and other discrete
choices that are common in various fields like finance, operations research, manufacturing,
and telecommunications. This subset provides solutions that are not only optimal but also
practically implementable in settings where fractional solutions would be impractical or
impossible.
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We propose the classical paging problem as a linear program in a different manner than
the literature, exploring a new way to see the problem.

It is already proven that paging can be formulated as a linear program, which allows us
to leverage the computational efficiencies associated with linear programming techniques.
Moreover, an important and somewhat less recognized result is that paging can also be
formulated as an integer program. This formulation opens up the application of a range of
powerful integer programming techniques, enhancing our ability to find optimal solutions
under specific constraints.

The ability to represent paging as an integer program is particularly significant. Integer
programming allows for the precise modeling of scenarios where decisions must be discrete,
such as in caching where the state of memory pages (either being in the cache or not)
is inherently binary. By defining paging as an integer program, we can apply advanced
optimization methods like branch and bound, branch and cut, and cutting plane methods,
which are tailored to handle the combinatorial nature of integer constraints.

In the context of paging, where decisions involve choosing which pages to retain in cache
and which to evict, the integer programming formulation ensures that these decisions are
made optimally within the constraints of memory capacity and access patterns. This ap-
proach provides a more accurate and effective solution compared to approximate or heuristic
methods that may not guarantee optimality.

To illustrate the practical application and benefits of this approach, we present the fol-
lowing Theorem, which demonstrates why paging can be defined as an integer problem. The
proof will represent the structure and properties of the integer program, showing how it
captures the essence of the paging problem.

We already proved that paging can be expressed in a linear program manner, now it is
time to explore the linear program that can be obtained by adding diversity constraints to
our main formulation. At the end we will also prove that this linear program with richness
constraints can also be formulated as an integer program.

Apart from adding richness constraints we could explore more notions such as Shannon
Index, group fairness, memory reserves and Hill numbers. But the contents of this research
are focused primarily on richness.

3.2 Exchange Decompositions

Definition 3.1 Given a schedule S, an exchange decomposition of iteration j of S, with
J ∈ {2, . . . , n} is a sequence e1, . . . , eTj

, with Tj = |Ij|, of pairs in Oj × Ij such that
(Oj ∪ Ij, {e1, . . . , eTj

}) is a perfect matching. An exchange decomposition M of S is a
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sequence M2, . . . ,Mn where every Mj is an exchange decomposition of iteration j in S,
j ∈ {2, . . . , n}. We denote by out(e), in(e) ∈ P the pages so that e = (out(e), in(e)) for each
exchange e in the decomposition.

An exchange decomposition captures a one-by-one sequence of steps, called exchanges
of how pages enter and leave the cache. See Figure 3.1 for an example of an exchange
decomposition of an iteration.

Figure 3.1: After applying the aforementioned procedure, we get an exchange decomposition of iteration j
defined by Mj,1 = {(p3, p9)}, Mj,2 = {(p4, p6), (p2, p7)}, and Mj,3 = {(p5, p8)}. The ordered sequence of
exchanges is e1 = (p9, p3), e2 = (p6, p4), e3 = (p7, p2), and e4 = (p8, p5).

Definition 3.2 The cache configuration history induced by an exchange decomposition M
of S is the sequence R0, . . . , RT ⊆ P, with T =

∑n
j=2 |Ij|, such that R0 = S1, and Rr =

Rr−1 ∪ {in(e)} \ {out(e)}, where e is the r-th exchange in M sorted according to iterations
and the corresponding order inside the exchange decompositions of the iterations.

The cache configuration history corresponds to the sequence of subsets of pages in the
cache after every step. We say that an exchange decomposition is feasible if every set in
the cache configuration history has richness at least δ, i.e., |{t ∈ [q] : Rr ∩ Pt ̸= ∅}| ≥ δ
for every r ∈ [T ]. The following proposition shows that a feasible exchange decomposition
always exists.

The first thing to explore is the decomposition of a schedule, which will be the first step
to find an algorithm. This is based on elaborating a manner to modify evicted pages in
order to build a feasible schedule that does not reduce diversity when it is not necessary, this
means, optimizing the schedule. We can also view this as constructing a perfect matching
between pages. For this purpose we state the following:

Proposition 3.3 Given a schedule S, there exists a feasible exchange decomposition of S,
and it can be computed in time poly(m,n).

To prove Proposition 3.3, we will map a schedule to an exchange decomposition by
constructing, for every iteration j ≥ 2, a perfect matching Mj in the complete bipartite
graph with node-partition given by Oj and Ij according to the following procedure:
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1. For each type t, construct a maximum cardinality matching Tj,t between the pages of
type t in Oj, and the pages of type t in Ij. We call Mj,1 the set of edges given by
∪qt=1Tj,t, and we denote by Oj,1 and Ij,1 the pages in Oj and Ij, respectively, that are
not matched in Mj,1.

2. We greedily construct a matching Mj,2 between Oj,1 and Ij,1 as follows: Let initially
Mj,2 = ∅, and S ′ be the cache configuration obtained after applying the exchanges from
Mj,1∪M ′ to Sj−1. As long as there exists a page po ∈ Oj \Oj,1 and a page pi ∈ Ij \ Ij,1
such that S ′ ∪ {i} \ {o} has richness larger or equal than the richness of S ′, we add
(po, pi) to Mj,2, remove po, pi from the current graph, update S ′ and continue with the
procedure. We denote by Oj,2 and Ij,2 the pages in Oj \Oj,1 and Ij \ Ij,1, respectively,
that are not matched in Mj,2.

3. We let Mj,3 be an arbitrary perfect matching between Oj,2 and Ij,2.

See Figure 3.1 for an example of the matching procedure execution. This way, we obtain an
exchange decomposition for each iteration j ∈ {2, . . . , n}, and hence an exchange decompo-
sition of S.

Proof. Consider the exchange decomposition obtained from the previous procedure. To see
that it is feasible, observe that, since S is a schedule, for each j ∈ {2, . . . , n} condition 2
ensures that |{t ∈ [q] : Sj ∩ Pt ̸= ∅}| ≥ δ, meaning that each iteration starts with a cache of
richness at least δ. Then, after applying all the exchanges of the iteration, the richness will
also be at least δ: By construction, exchanges of an iteration are sorted so that there is a first
set of exchanges, Mj,1∪Mj,2, that does not decrease the richness, and then a second set Mj,3

of exchanges that decrease richness, meaning that every intermediate cache configuration
has richness at least δ in the iteration, proving the claimed result.

3.3 Reduced Schedules

Definition 3.4 A schedule is reduced if for every iteration j ≥ 2, the unique page that might
be added to the cache is σj, that is, Sj \ Sj−1 ⊆ {σj}. The combinatorial formulation of the
diverse paging problem is obtained by further imposing that every schedule must be reduced,
namely,

min
{

cost(S) : S is a reduced schedule satisfying 1 and 2
}
. (3.1)

We remark that when δ = 0, we recover in (3.1) the classic paging problem. Furthermore, for
the classic paging problem, it is known that the k-server and the combinatorial formulations
are equivalent, as the value of (3.1) is equal to the value of (2.2).
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Definition 3.5 We define an operation Op(a→ b) when page a evicts some page b, making
it correspond to the pair of inserted and evicted.

Definition 3.6 We say two operations Op1(p1 → p2) and Op2(p3 → p4) can be matched
when a swap is possible such as they now evict each others page, in this case the match would
be Op1(p1 → p3) and Op2(p2 → p4).

In this section we will prove that our classic paging problem formulation can be solved
by an integer schedule, where we define and restrict our variables x and y to be binary.

This results being one of the main results of this research, which leaded us to the idea
that adding richness constraints could also end in an integer program.

The next step is meant to build a reduced optimal schedule in polynomial time, because
if we can reduce a schedule that we know is optimal for the diverse paging problem, it makes
easier the construction of an optimal integer schedule.

Theorem 3.7 Assume a feasible schedule S for an instance of the diverse paging problem,
then, we can find a reduced schedule S ′ in polynomial time such that cost(S ′) ≤ cost(S). In
particular, the value of the k-server formulation (2.2) is equal to the value of the combinatorial
formulation (3.1)

Proof. To prove this theorem, we start by decomposing a non-reduced schedule as follows:
for every iteration j = {2, . . . , n}, we have a set Ij = Sj/Sj−1 of pages that entered the
cache due to request j, and a set Oj = Sj−1/Sj of pages that were evicted from cache due to
request j. Notice that Ij and Oj are always disjoint and |Ij| = |Oj| as we have to maintain
k pages in cache.

Consider the feasible exchange decomposition M of S constructed by Proposition 3.3.

For each iteration j ∈ {2, . . . , n}, we say that an exchange e in Mj is non-reduced if
in(e) ̸= σj, i.e., it adds to the cache a page that is not the request σj at iteration j. We show
how to construct a new schedule such that its exchange decomposition has no non-reduced
exchanges.

Consider the exchange ej⋆,i⋆ ∈ Mj∗ , with j⋆ ∈ {2, . . . , n} and i⋆ ∈ {1, . . . , |Ij⋆ |}, that is
the last non-reduced exchange in the decomposition. We construct a new schedule S ′ and
its corresponding exchange decomposition M′ by delaying the execution of ej⋆,i⋆ as long as
it is non-reduced, according to the following iterative procedure:

1. If j⋆ = n + 1, we simply remove ej⋆,i⋆ from the sequence, obtaining a schedule where
this last exchange does not occur.

2. If j⋆ ≤ n and i⋆ < |Ij⋆ |, let ej⋆,i∗+1 be the exchange of Mj⋆ in position i∗ + 1, and
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consider the following four cases:

(a) If out(ej⋆,i⋆) = in(ej⋆,i⋆+1), i.e. the exchanges evict a page in cache and include
it back immediately after in the same iteration, then we define a new exchange
decomposition for iteration j⋆, namely M ′

j⋆ , where we remove both ej⋆,i⋆ and
ej⋆,i⋆+1 from Mj∗ , and include a new exchange e′ = (out(ej⋆,i⋆+1), in(ej⋆,i⋆)) in
that position (adapting the labels of the exchanges accordingly). The delaying
procedure later continues delaying e′, as it is still non-reduced.

(b) If in(ej⋆,i⋆) = out(ej⋆,i⋆+1), i.e. the exchanges place a page in cache and remove it
immediately after in the same iteration, then we define a new exchange decompo-
sition for iteration j⋆, namely M ′

j⋆ , where we remove both ej⋆,i⋆ and ej⋆,i⋆+1 from
Mj∗ , and include a new exchange e′ = (out(ej⋆,i⋆), in(ej⋆,i⋆+1)) in that position
(adapting the labels of the exchanges accordingly). Since ej⋆,i⋆ was the last non-
reduced exchange (and therefore in(ej⋆,i⋆+1) = σj⋆), the delay ends as the new
exchange becomes reduced.

(c) If none of the above happens, let M ′
j⋆ be the exchange decomposition for iteration

j⋆ obtained by swapping ej⋆,i⋆ , and ej⋆,i⋆+1, i.e., M ′
j⋆ is defined as e′j⋆,i = ej⋆,i for

every i /∈ {i⋆, i⋆ + 1}, e′j⋆,i⋆ = ej⋆,i⋆+1, and e′j⋆,i⋆+1 = ej⋆,i⋆ . If the obtained
exchange decomposition is feasible, we replace Mj⋆ by M ′

j⋆ and continue with the
delay procedure.

(d) Otherwise, if the obtained exchange decomposition in (c) is not feasible, we then
define another exchange decomposition M ′′

j⋆ as e′′j⋆,i = ej⋆,i for every i /∈ {i⋆, i⋆+1},
e′′j⋆,i⋆ = (out(ej⋆,i⋆), in(ej⋆,i⋆+1)), and e′′j⋆,i⋆+1 = (out(ej⋆,i⋆+1), in(ej⋆,i⋆));
see Fig. 3.2 for a depiction of this operation.

3. If j⋆ ≤ n and i⋆ = |Ij⋆ |, i.e., it is the last exchange of the iteration, then we remove
ej⋆,i⋆ from Mj⋆ and include it as the first exchange in Mj⋆+1 (adapting the exchange
labels accordingly). This also modifies the schedule, as now Sj is obtained without
performing exchange ej∗,i∗ (while the rest remains unchanged).

Claim 1 After each step of the previous procedure, the obtained schedule is a feasible solution
to diverse paging with richness requirements, and its obtained exchange decomposition is also
feasible.

If we apply this procedure for every non-reduced operation in the aforementioned order,
by Claim 1, we obtain at the end a reduced schedule whose cost is not larger than the original
one since the procedure does not add new exchanges. This proves the theorem.

To prove the claim, observe that if j⋆ = n+1, then the page that this exchange includes
in the cache is not requested, and hence the exchange can be safely removed. In case 2,
the schedule remains unchanged, and sub-cases (a) and (b) simply merge two operations
in one that is equivalent to applying both in sequence, while sub-case (c) satisfies richness
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constraints by construction. For sub-case (d), observe that this can happen only if applying
exchange ej⋆,i⋆+1 first decreases the richness from δ to δ−1, and then exchange ej⋆,i⋆ brings it
back to δ (as it must be feasible after the two exchanges). This implies that ej⋆,i⋆+1 is evicting
a page of a type that disappears from the cache while including a page of a type that is already
in the cache, and ej⋆,i⋆+1 is evicting a page of a type that does not disappear from cache while
including a page of a type that is absent from the cache. After performing the operation
in (d), then both new exchanges (out(ej⋆,i⋆), in(ej⋆,i⋆+1)) and (out(ej⋆,i⋆+1), in(ej⋆,i⋆)) do not
change the number of types in the cache (see Fig. 3.2). Finally, case 3 changes the schedule
but not the cache configuration history, so it remains feasible.

Figure 3.2: Depiction of case 2 (d) in the proof of Theorem 3.7, where numeric labels on the edges represent
the change of richness induced by the exchange. If that happens, we can rematch the edges and maintain
feasibility.

Definition 3.8 We say that a feasible solution (x,y,f) of (2.3) is reduced if for every iteration
j = {2, . . . , n}:

xij − xij−1 > 0 only for pj = σj

In the second step, we show that any feasible solution to the linear program (2.3) can be
modified in polynomial time and at no extra cost to get a reduced fractional solution.1

3.4 Fractional Diverse Paging

As we saw in the previous result, we will be looking into fractional solutions as a way to
generalize the problem, but at some point we will discover a way to transform a fractional
schedule into an integer schedule.

We will also explore the previous notion of exchange decompositions but this time for
fractional schedules, analogous to the integer case, there is a way to decompose a fractional
schedule.

1The cost of a feasible solution (x, y, f) in (2.3) is the objective value
∑n

j=2

∑m
i=1 fi,j +

∑m
i=1 xi,1.

35



Chapter 3. Offline Paging with Richness Constraints 3.4. Fractional Diverse Paging

Definition 3.9 Given a fractional schedule x, a fractional exchange decomposition Mj of
iteration j, with j ∈ {2, . . . , n}, is a sequence e1, . . . , eTj

, for some Tj ≤ |Ij||Oj|, of pairs in
Oj × Ij, and a function w : {e1, . . . , eTj

} → [0, 1], such that:

1.
∑

e∈Mj :in(e)=pi
w(e) = xi,j − xi,j−1 for every pi ∈ Ij,

2.
∑

e∈Mj :out(e)=pi
w(e) = xi,j−1 − xi,j for every pi ∈ Oj,

where we denote by out(e), in(e) ∈ P the pages so that e = (out(e), in(e)) for each exchange
e in the decomposition. A fractional exchange decompositionM of x is defined as a sequence
M2, . . . ,Mn, where each Mj is a fractional exchange decomposition of iteration j.

See Figs. 3.3 and 3.4 for examples of fractional exchange decompositions. They capture,
roughly speaking, how the cache changes as a sequence of fractional exchanges.

Definition 3.10 The cache configuration history induced by a fractional exchange decom-
positionM of a fractional schedule x is the sequence R0, . . . , R|M|, with T =

∑n
j=2 |Ij|, such

that R0 = (x1,1, . . . , xm,1), and Rr is obtained by replacing xi,j by xi,j +w(e), and also xo,j by
xo,j −w(e) in Rr, where e = (pi, po) is the r-th exchange in M sorted according to iterations
and the corresponding order inside the exchange decompositions of the iterations.

Proposition 3.11 Given a fractional schedule x, there exists a feasible fractional exchange
decomposition of x, and it can be computed in time poly(m,n).

Proof. We first provide a procedure that constructs the fractional exchange decomposition
without polynomial running time guarantees, and then modify it to obtain the desired result.

Let ε > 0 be a value such that |xi,j − xi,j−1| can be written as an integer multiple of ε,
for every i ∈ [m] and j ∈ {2, . . . , n}, and such that 1/ε ∈ N. Then, for each j ∈ {2, . . . , n},
we will construct an auxiliar exchange decomposition where each page pi ∈ Ij is replaced by
ℓi,j = (xi,j − xi,j−1)/ε many copies of the page, that we call ε-pages, having the same type
as i; we also replace pages pi ∈ Oj by ℓ′i,j = (xi,j−1 − xi,j)/ε many ε-pages of the same type
of page pi. Hence, an exchange of the form (pi, pi′) over a cache configuration (x1, . . . , xm)
would correspond to decreasing xi by ε and increasing xi′ by ε.

If we proceed this way for every i and j, we obtain a (integral) diverse paging instance,
with the only difference that each ε-page contributes ε to the cache richness (instead of
one), and up to a total of at most one for each type. This implies that we can apply
Theorem 3.7 to this instance and obtain a reduced schedule, but adapted for the modified
contribution to richness. Indeed, we decompose iterations into a feasible exchange sequence
of ε-pages analogously as in Proposition 3.3, following the procedure, except that in case (2)
instead of considering the usual richness, we check whether the fractional cache configuration
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(x1, . . . , xm) obtained after executing the exchange satisfies that
∑

t∈[q] min{1,
∑

i:p∈Pt
xi} did

not decrease.

Since the obtained fractional schedule is feasible and leaves the exchanges that decrease
richness at the end of each iteration, we obtain a feasible fractional exchange decomposition
of ε-pages. We can easily retrieve a feasible fractional exchange decomposition for x by
merging the exchanges between ε-pages that correspond to equal pairs of pages, and defining
the weights as the number of merged exchanges in each case.

Instead of explicitly constructing the exchanges defined by all the ε-pages and then
merging, which might lead to exponential running time due to ε being restrictively small,
we will immediately construct the merged fractional exchanges at each step.

Now it is possible to describe the modifications to reach polynomial time. We construct
the fractional exchange decomposition of each iteration j as follows:

1. We initialize a cache configuration r = (x1,j−1, . . . , xm,j−1). We check whether there
are pages pi ∈ Ij and po ∈ Oj of the same type such that min{xi,j − ri, ro − xo,j} > 0,
and create an exchange e = (pi, po) with w(e) = min{xi,j − ri, ro − xo,j}, update the
cache configuration r, and continue.

2. If there is no pair of pages as in the previous case, we check whether there are pages
pi ∈ Ij and po ∈ Oj such that the fractional cache configuration obtained after perform-
ing an exchange e = (pi, po) with w(e) = ε for a value ε > 0 arbitrarily small, namely
(r′1, . . . , r

′
m), satisfies that

∑
t∈[q] min{1,

∑
i:pi∈Pt

r′i} ≥
∑

t∈[q] min{1,
∑

i:pi∈Pt
ri}. We

then set α ≤ 1 as the maximum possible value such that, if we perform exchange e =
(pi, po) with w(e) = α over r obtaining (r′1, . . . , r

′
m), it holds that

∑
t∈[q] min{1,

∑
i:pi∈Pt

r′i} ≥∑
t∈[q] min{1,

∑
i:pi∈Pt

ri}, and then create exchange e = (pi, po) with w(e) = min{xi,j−
ri, ro − xo,j, α}; we update the cache configuration and continue.

3. If there is no pair of pages as in the previous cases, we take an arbitrary pair pi ∈ Ij
and po ∈ Oj satisfying that min{xi,j − ri, ro − xo,j} > 0, and create an exchange
e = (pi, po) with w(e) = min{xi,j−ri, ro−xo,j} > 0; we update the cache configuration
and continue.

If we perform this procedure for each iteration, we obtain our desired fractional exchange
decomposition at the end, which is furthermore feasible because we leave exchanges that
decrease richness at the end of each iteration.

Observe that, by construction, every time a fractional exchange is created due to the first
case, some value ri − xi,j becomes zero; if it is created due to the second case, either some
value ri−xi,j becomes zero, or some value

∑
i∈Pt

ri becomes one; if some exchange is created
in the third case, some value ri − xi,j becomes zero again. Consequently, this procedure
creates O(n(m+ q)) exchanges and therefore has a polynomial running time.
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Theorem 3.12 For every feasible solution (x, y, f) of (2.3), it is possible to compute in
polynomial time a reduced feasible solution such that its cost is at most the cost of (x, y, f).

Proof. Consider the feasible fractional exchange decomposition M of x constructed by
Proposition 3.11. If we assume this exchange decomposition is defined for ε-pages, then we
can construct a new schedule and a feasible fractional exchange decomposition for it anal-
ogously to the proof of Theorem 3.7, delaying non-reduced exchanges in reverse order, but
with the only difference that we take into account the richness as

∑
t∈[q] min{1,

∑
i:pi∈Pt

xi,j}.

Indeed, if an exchange breaks feasibility as
∑

t∈[q] min{1,
∑

i:pi∈Pt
xi} < δ, it is because

we perform first an exchange that evicts an ε-page of a type with at most 1/ε many ε-pages
in the cache and includes a ε-page of a type with at least 1/ε many ε-pages in the cache, and
then we perform an exchange that evicts a ε-page of a type with at least 1/ε many ε-pages
in the cache, and includes a ε-page of a type with at less than 1/ε many ε-pages in the cache.
If we cross these exchanges, then we can continue delaying exactly as in Theorem 3.7.

To guarantee polynomial time, we construct the fractional exchange decomposition of
each iteration j as follows:

1. We initialize a cache configuration r = (x1,j−1, . . . , xm,j−1). We check whether there
are pages pi ∈ Ij and po ∈ Oj of the same type such that min{xi,j − ri, ro − xo,j} > 0,
and create an exchange e = (pi, po) with w(e) = min{xi,j − ri, ro − xo,j}, update the
cache configuration r, and continue.

2. If there is no pair of pages as in the previous case, we check whether there are pages
pi ∈ Ij and po ∈ Oj such that the fractional cache configuration obtained after perform-
ing an exchange e = (pi, po) with w(e) = ε for a value ε > 0 arbitrarily small, namely
(r′1, . . . , r

′
m), satisfies that

∑
t∈[q] min{1,

∑
i:pi∈Pt

r′i} ≥
∑

t∈[q] min{1,
∑

i:pi∈Pt
ri}. We

then set α ≤ 1 as the maximum possible value such that, if we perform exchange e =
(pi, po) with w(e) = α over r obtaining (r′1, . . . , r

′
m), it holds that

∑
t∈[q] min{1,

∑
i:pi∈Pt

r′i} ≥∑
t∈[q] min{1,

∑
i:pi∈Pt

ri}, and then create exchange e = (pi, po) with w(e) = min{xi,j−
ri, ro − xo,j, α}; we update the cache configuration and continue.

3. If there is no pair of pages as in the previous cases, we take an arbitrary pair pi ∈ Ij
and po ∈ Oj satisfying that min{xi,j − ri, ro − xo,j} > 0, and create an exchange
e = (pi, po) with w(e) = min{xi,j−ri, ro−xo,j} > 0; we update the cache configuration
and continue.

If we perform this procedure for each iteration, we obtain our desired fractional exchange
decomposition at the end, which is furthermore feasible because we leave exchanges that
decrease richness at the end of each iteration.

38



Chapter 3. Offline Paging with Richness Constraints 3.5. Schedules: Fractional to Integer

Observe that, by construction, every time a fractional exchange is created due to the first
case, some value ri − xi,j becomes zero; if it is created due to the second case, either some
value ri−xi,j becomes zero, or some value

∑
i∈Pt

ri becomes one; if some exchange is created
in the third case, some value ri − xi,j becomes zero again. Consequently, this procedure
creates O(n(m+ q)) exchanges and therefore has a polynomial running time.

3.5 Schedules: Fractional to Integer

As an important step, we need to transform a fractional schedule into an integer schedule,
for this purpose, we will be looking at a way for doing this in a way that does not affect the
cost of the solution, which is fundamental for keeping an optimal schedule.

Proposition 3.13 Let x be a reduced fractional schedule such that the following holds:

1. xi,1 ∈ {0, 1} for every i ∈ {1, . . . ,m}, and

2. for every j ∈ {2, . . . , n}, we have |Oj| ≤ 1.

Then, x is integral.

Proof. We will prove by induction on the iterations that the cache configuration history
consists of integral solutions. The base case comes from 1. For the inductive step, assume
that the cache configuration at iteration j is integral. Since the fractional schedule is reduced,
we have two cases: If Ij+1 = ∅, no exchange is performed and the cache configuration is
integral; if |Ij+1| = 1, since the cache configuration at iteration j was integral, it means the
exchange is including a page that was not present in the cache configuration, and then due
to 2 and the first constraint of (2.3), some page is evicted entirely from cache, obtaining an
integral cache configuration.

Theorem 3.14 For every reduced feasible solution (x, y, f) of (2.3), it is possible to compute
in polynomial time an integral feasible solution such that its cost is at most the cost of (x, y, f).

Proof. We will first ensure the integrality of the initial cache configuration. Recall that σ =
σ1 . . . σn is the request sequence, and let us define a new request sequence σ′ = σ1σ1σ2 . . . σn

(i.e., a request sequence that repeats the first request). It is not difficult to see that they
both have the same optimal cost, as any feasible solution for σ can simply maintain the
cache configuration for the second request of σ′.

We will modify x so as to satisfy σ′ as follows. Consider the pages i such that xi,1 ∈ (0, 1),
and let us call this set P1. Among them, let pi⋆ be the page that is requested again for the
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first time at the latest. We will then create a new schedule x̃ to satisfy σ′, initially equal to
the aforementioned modification of x to satisfy σ′, but we set x̃i⋆,1 = 0 and increase the value
of the variables of a subset of pages in P1 \ {pi⋆} so as to obtain back a feasible schedule.
To do so, we distinguish three cases: if removing pi⋆ from the initial cache does not violate
the richness constraint, then we can increase an arbitrary subset of variables; if removing
pi⋆ from the cache breaks richness and its corresponding variable yt,1 was originally one, due
to xi⋆,1 being fractional, there must be other pages of the same type in P1 \ {pi⋆}, and we
can increase them to satisfy richness, and then increase any other page if needed; finally,
if removing pi⋆ from cache breaks richness and its corresponding variable yt,1 was less than
one, then due to xi⋆,1 being fractional, there must be other types in the initial cache different
to the type of pi⋆ such that the corresponding variable yt,1 is also strictly smaller than one
(hence all the pages of that type with xi,1 > 0 are in P1), and we can increase these variables
to satisfy the richness constraint, and any other variable after that if needed.

Then, for the second σ1 request in σ′, we set all the values x̃i,2 to be xi,1, meaning that
pi⋆ is back in cache and the increased values in the previous operation are decreased back.

Figure 3.3: Depiction of the procedure to obtain an integral initial cache in Theorem 3.14. (Left) Fractional
pages in the initial cache of the original solution are interpreted as fractional exchanges; nodes on the left
represent the empty slots in the cache, and their labels represent the amount by which they leave the cache;
nodes on the right represent pages entering the cache with their corresponding amounts by which their
variables increase, and edges represent fractional exchanges. (Right) Decomposition of the initial operations
into two iterations, so as to reduce the second one by means of Theorem 3.12.

See Fig. 3.3 for a depiction of the procedure. After doing this change, we obtain a feasible
solution for σ′ with one less fractional page in the initial cache compared to x, but that may
not be reduced. Consequently, we reduce it by means of Lemma 3.12, obtaining a fractional
reduced schedule with one less fractional page in the initial cache for σ′. Furthermore,
observe that the second iteration will become irrelevant for σ′ (pi⋆ is not requested in the
first iteration as xi⋆,1 is fractional and the schedule is feasible), and if we remove it then we
obtain a reduced fractional schedule with one less fractional page in the initial cache for σ.

In terms of cost, note that including page pi⋆ back in the iteration corresponding to σ2 has
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a cost of xi⋆,1, but then after reducing the schedule we obtain a solution that has cost smaller
by at least xi⋆,1 since, due to the choice of pi⋆ , when any page from P1 \ {pi⋆} is requested,
its variable has to be increased by a smaller value due to the extra amount coming from
xi⋆,1 that was transferred to them, decreasing the cost associated to that request; since pi⋆ is
not requested before any page in P1 \ {pi⋆} and the original schedule was reduced, the total
cost of the new reduced solution is not larger than the original one. Thus, repeating this
procedure leads us to a fractional reduced schedule with an integral initial cache whose cost
did not increase, i.e., 1 is satisfied.

To ensure now that in each iteration at most one page leaves the cache, we can proceed in
a similar way. Let j be the first iteration where more than one page leaves the cache, namely,
pi1 , . . . , pik . We consider a modified request sequence σ′ = σ1 . . . σj−1σjσjσj+1 . . . σn (i.e., we
repeat the request σj). Let pi⋆ be the page, among the ones that are leaving the cache in
iteration j, that is requested first again in the future. We will not remove pi⋆ from cache
(meaning that we set x̃i⋆,j = xi⋆,j−1), and instead evict other pages from {pi1 , . . . , pik}\{pi⋆}
compensating for xi⋆,j−1−xi⋆,j while preserving the richness constraint. Note first that since
we have a reduced fractional schedule with an integral initial cache, the cache has been
integral up to this point. If we look at the set of pages from the cache, plus the requested
page σj, this set can have richness at least δ + 1 or δ. In the first case, removing any of the
pages in {pi1 , . . . , pik} \ {pi⋆} further to compensate for xi⋆,j−1 − xi⋆,j satisfies the richness
constraint; in the second case, all the pages that are being removed do not decrease the
richness, and hence we can also remove any of them further to compensate for xi⋆,j−1−xi⋆,j.

After that, in the second request σj, we include back these pages by evicting pi⋆ for a
value of xi⋆,j−1− xi⋆,j, and then we reduce the schedule by using Theorem 3.12. See Fig. 3.4
for a depiction of the procedure. This way, we obtain a fractional reduced schedule with an
integral initial cache, and we evict one less page in iteration j. In terms of cost, including
back the pages has a cost of xi⋆,j−1−xi⋆,j, but then reducing produces a schedule whose cost
is smaller by at least the same amount because now when pi⋆ is requested there is no need
to increase the variable as it is already one (due to being requested first in future among
the removed pages in iteration j). If we continue like this, condition 2 is satisfied, and by
Proposition 3.13, we end up with an integral solution to (2.3) whose cost is not higher than
the original one. This concludes the proof.
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Figure 3.4: Depiction of the procedure to reduce the number of pages evicted in each iteration in Theo-
rem 3.14. (Left) Iteration j for sequence σ, following the same notation as Figure 3.3. (Right) Decomposition
of the iteration into two iterations, so as to reduce the second one by means of Theorem 3.12.

3.6 Online Paging

3.6.1 Competitive Algorithms

As for the online algorithms, results natural to find a way to compare between multiple
algorithms including the optimal algorithm, so in this section we will take a look at this kind
of measures.

We need a notion to compare online algorithms, the most natural way uses the offline
optimal solution to measure how good the online algorithm is. So we need to define the
following:

Definition 3.15 (Competitiveness) An algorithm A is called c-competitive if there exists a
constant b such that on every request sequence σ we have that

costk,A(σ) ≤ c · costk,OPT (σ) + b

Where costk,OPT (σ) resembles the cost of the optimal algorithm with cache size k on a sequence
σ.

We also need an indicator to measure the faults respect to the optimal, so we define:

Definition 3.16 (Competitive ratio) We define the competitive ratio of an algorithm A as
the ratio between the number of page faults incurred by A to the number of faults incurred
bu OPT in the worst-case scenario.

We also define the competitive ratio such as for any paging algorithm A, the competitive
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ratio is defined as the ratio of the number of page faults incurred by A to the number of
page faults incurred by OPT , in the worst-case scenario.

3.6.2 Deterministic Algorithms

We also study deterministic algorithms for diverse paging, exploring their definitions, char-
acteristics, and performance metrics.

To understand deterministic algorithms in the context of diverse paging, we first need to
establish some foundational concepts.

Definition 3.17 (Decision rule) A decision rule for the diverse paging problem is a rule that
determines which page is evicted based on specific criteria. This rule dictates the behavior of
the algorithm in a precise and predictable manner

Definition 3.18 (Deterministic algorithm) An algorithm is considered deterministic if it
operates based on a decision rule. This implies that no matter how many times the algorithm
is executed on a given instance, it will always produce the same result.

This means a deterministic algorithm is fully predictable.

Our study also includes establishing a lower bound for the performance of deterministic
algorithms in diverse paging scenarios.

Lemma 3.19 If A is any deterministic online paging algorithm, let k be the cache size and
σ any page request sequence, we have that:

costk,A(σ) ≥ k

Proof. In the worst-case scenario, we have a sequence with k different pages, so the algorithm
must have a cost for each one, as processing the first k requests has a cost equal to the number
of pages, we cannot have less cost.

This lemma indicates that the cost (in terms of page faults) of any deterministic algorithm
on any sequence of page requests is at least k, the size of the cache. This sets a fundamental
performance baseline for such algorithms.

3.6.3 Marking Algorithms

It is needed to research the competitiveness of the marking algorithms, so we state the
following:
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Theorem 3.20 Any marking algorithm is O(k)-competitive

Proof. Let σ = σ1, σ2, . . . , σn be the request sequence. A marking algorithm will divide σ
into phases 1, . . . , T . We will lower bound the cost induced by an optimal solution phase by
phase, where we distinguish two cases:

• If the phase finished due to every page in the cache being marked, this means that
k+1 different pages have been requested during this phase; consequently, the optimal
solution must have evicted some page during this phase, paying a cost of at least 1.

• If the phase finished due to not being able to evict any unmarked page, this means
that the set of marked pages in the phase plus the incoming request does not satisfy
the diversity constraint; consequently, the optimal solution cannot have them all in
cache during the whole phase and must have evicted some page, paying a cost of at
least one.

Notice that any marking algorithm pays a cost of at most k per phase, and we conclude
that it is k-competitive.

3.6.4 Optimal algorithm

As we saw earlier, our variations of LFD do not work for the problem, hence, we use a
procedure based on our findings to construct an optimal algorithm for the problem, although
that is more difficult to implement, it leads to the following statement:

Theorem 3.21 There exists a poly(n,m, q) algorithm to find an optimal schedule for the
diverse paging problem with richness requirements (2.2).

Proof. Let (x⋆, y⋆, f ⋆) be an optimal solution of the linear program (2.3), and we denote by
OPTLP its value. By Lemma 3.12, we can compute in polynomial time a reduced feasible
solution such that its objective cost is at most OPTLP, and by Lemma 3.14 from this reduced
feasible solution we can compute in polynomial time an integral feasible solution (X,Y, F )
in (2.3) with objective cost

∑n
j=2

∑m
i=1 Fi,j +

∑m
i=1 Xi,1 ≤ OPTLP.

By Lemma 2.1, we have MTS = OPTIP, where MTS is the value of the k-server formu-
lation (2.2), and OPTIP is the optimal value of the integer program [IPδ]. Since (X,Y, F ) is
feasible for [IPδ], we have

∑n
j=2

∑m
i=1 Fi,j+

∑m
i=1 Xi,1 ≥ OPTIP. In general, OPTIP ≥ OPTLP,

and therefore we conclude that the objective cost of (X,Y, F ) is equal to OPTIP and equal
to OPTLP. Finally, to get the optimal schedule for (2.2), we define S1, S2, . . . , Sn such that
Sj = {pi ∈ P : Xi,j = 1}.
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We used all the theoretical proofs presented earlier in order to reach the optimal algorithm
we were looking for, the important result apart from an approach like that existing is that it
runs on polynomial time, proving the problem is not NP-Hard, which could be expected as
the classic paging problem can also be solved on polynomial time, so we can conclude that
the richness diversity measure does not affect the order of the running time for the optimal
algorithm.
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Computational experiments

For our computational tests addressing the paging problem with diversity constraints, we
utilized Python as the programming language. Python’s ease of use and robust debugging
capabilities made it an ideal choice for implementing and testing our algorithms.

To solve the linear program (LP) formulated for the problem, we employed the Gurobi
optimization framework. Gurobi is renowned for its efficiency in solving large-scale linear
and integer programming problems, making it a perfect fit for our needs. The computations
were executed in a Google Colab environment, which provided several advantages:

• Speed and efficiency: Google Colab leverages cloud computing resources, ensuring
that our calculations are performed as quickly as possible.

• Accessibility and collaboration: The cloud-based environment facilitates remote
work and collaboration, allowing team members to share and review results seamlessly.

We chose a Python notebook environment for our development and testing processes.
This choice was motivated by several factors:

• Structured workflow: Notebooks provide a structured environment that allows for
incremental development and testing. Code, documentation, and results can be inter-
leaved, making the workflow more intuitive and easier to manage.

• Interactive debugging: The interactive nature of notebooks makes it easier to debug
code, test different scenarios, and visualize intermediate results.

• Documentation and presentation: Notebooks serve as both a development tool
and a presentation medium, combining executable code with rich text, equations, and
visualizations.
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For visualizing the results of our algorithms and LP solutions, we utilized Matplotlib, a
high-level plotting library in Python. Matplotlib’s capabilities enabled us to create detailed
and precise plots for each instance solution, facilitating a clear and comprehensive analysis
of the outcomes. Some key benefits included:

• High-Level plotting: Matplotlib provides a straightforward interface for creating a
wide range of plots, from simple line graphs to complex multi-plot figures.

• Customization: The library offers extensive customization options, allowing us to
tailor the visualizations to highlight specific aspects of the solutions.

• Integration with Notebooks: Matplotlib integrates seamlessly with Google Colab,
enabling us to display visualizations directly alongside the code and analysis.

To structure the code we used multiple functions for each operation needed (create mod-
els, solve models, calculate gaps, plot solutions, etc). So at the end we just called functions
in a linear code to perform all needed steps.

4.1 Linear Program Results

We will be using the instance shown in page 26 for this example.

We know this is the optimal for the instance we are looking into because:

1. The model (2.3) we are using represents the problem of paging with diversity (richness
constraints).

2. The optimizer ensures to find an optimal for the model given.

So we are sure this is the optimal for the instance, moreover, we can calculate the optimal
for any given instance.

The first thing we noticed is that solving the model always retrieved an integer solution,
we tested for around 100.000 different random instances satisfying the definition for a diverse
paging problem, and the optimal schedule always showed integer, so this led us to the idea
of an optimal integer solution being possible for any given instance.

The second thing we noticed was that when the restriction of having k pages was relaxed
to be at most k pages, the optimal schedule did not use all the space at every iteration, so
this awakened the concept of some pages not being relevant at some points, we can confirm
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this by simply looking at the start of the schedule, where we only need to cover the richness
constraint and do not lose cost for not having future pages in the cache.

As long as we are allowed to introduce dummy pages, we can convert any non-feasible
instance into a feasible instance by adding a dummy page of the color missing, which will
always incur in some cost due to the dummy page having to be always in cache, the solution
will be equivalent to reducing the cache size to k − 1 and decreasing δ to δ − 1.

See Figure 4.1 for the solution to the instance, where we can confirm all mentioned points.
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Figure 4.1: Optimal schedule for some arbitrary instance.
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4.2 Algorithm Comparison

As for the more studied CLFD algorithm, we know that it never breaks diversity by construc-
tion, although we can see that it takes different paths compared to the optimal schedule,
in most cases the cost is the same, but there are some cases that at some point it makes
a different eviction compromising richness later and having to keep a different page than
the optimal does, hence, the cost increases as it limited its moves. See Figure 4.2 for the
graphical description of this point.

Another difference is that at the start of the instance, by construction CLFD decides to
include the first k pages that satisfy richness, unlike the optimal algorithm it starts with a full
cache and evicts more pages later, making use of a not totally reduced schedule. Although,
it satisfies being a reduced schedule at some point, specifically it always end with δ pages as
it does not require more than that to satisfy the conditions for the problem.

Like for the instance we decided to display, there are many other instances where the cost
coincides with the optimal cost, this for the small instances explored at first was inducing
us to think that CLFD was optimal, but as we tried to prove this claim and explored more
complicated instances, we eventually found an instance where our algorithm was sub-optimal
and after an analysis we were able to determine a simple instance where CLFD failed (the
one shown in Lemma 2.5).

This intuition of sub-optimality could be hinted by the comparison shown in the first
point, but it was not fully clear as there could be multiple optimal solutions. With this
in mind we decided to explore different approaches for our goal of developing an optimal
algorithm, our next step landed on CELFD as we were also looking for a more theoretical
way.

As CELFD quickly showed to be sub-optimal, this branch was discarded and we fully
focused on the theoretical way, which finally led us to the optimal algorithm we presented
on the previous section.
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Figure 4.2: Optimal schedule compared to the CLFD algorithm schedule.
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Conclusions and future work

5.1 Conclusions

In this section, we will discuss our findings and their impact on the current body of knowledge
in the field of paging problems, both offline and online. Our research has provided valuable
insights and advancements in understanding and solving these problems, particularly with
the inclusion of diversity constraints.

5.1.1 Offline Paging

For the offline paging results, our research dived into two main areas: linear programs and
algorithms.

Our investigation into linear programs revealed that the classical paging problem can
indeed be formulated as an integer linear program. This is a significant finding, as integer
programming offers a robust framework for solving discrete optimization problems. Despite
its potential, this approach is not widely used or reviewed in the literature, highlighting an
area ripe for further exploration. The integer formulation is especially valuable when no
other algorithmic solution exists for the problem at hand.

Additionally, our study on the paging problem with richness constraints demonstrated
that it also results in an integer program. This suggests that in practical scenarios, opti-
mal fractional schedules are rare, and solutions will predominantly be integer-based. This
conclusion depends heavily on the optimizer used, as different optimizers may yield varying
results.

In our algorithmic exploration, we developed two algorithms that, while not optimal for
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the paging problem with diversity constraints, opened the way for discovering the optimal
algorithm. The optimal algorithm we identified runs in polynomial time and is highly effi-
cient. As it addresses the paging problem with diversity constraints this means it also shows
potential for solving a wide range of memory allocation problems involving various types.
This has significant implications for real-world logistics and resource management problems,
where optimal memory allocation is crucial.

5.1.2 Online Paging

For the online paging results, our research focused on three main axes: marking algorithms,
deterministic algorithms, and randomized algorithms.

We evaluated the competitiveness of marking algorithms and established a clear under-
standing of their performance in online paging scenarios. Our findings provide a benchmark
for what can be expected from this family of heuristics. These results are valuable for practi-
tioners seeking reliable, near-optimal solutions in dynamic and unpredictable environments.

In the realm of deterministic algorithms, we identified a lower bound that serves as a
baseline for the best possible outcomes achievable with this approach. This baseline is crucial
for benchmarking and improving existing deterministic algorithms, guiding future research
towards more effective and efficient solutions.

Our exploration of randomized algorithms, while less conclusive, underscored the chal-
lenges inherent in developing these types of solutions. The inherent unpredictability and
complexity of randomized algorithms make them difficult to design and analyze. However,
this also points to an exciting avenue for future research, as advancements in this area could
lead to breakthroughs in handling highly dynamic and uncertain paging scenarios.

Overall, our research has significantly advanced the understanding of paging problems,
particularly with the incorporation of diversity constraints. The findings offer new theoreti-
cal insights and practical algorithms that can be applied to a variety of real-world problems.
By establishing the feasibility of integer programming in these contexts and developing effi-
cient algorithms, we have provided tools that can enhance memory allocation and resource
management across numerous applications. The implications of this work extend beyond
theoretical interest, promising tangible improvements in fields such as logistics, computer
systems, and operations research.
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5.2 Future Work

In this section, we outline potential directions for future research based on our findings.
These directions aim to build upon the current study, exploring new dimensions of diver-
sity constraints and advancing algorithmic development in both offline and online paging
contexts.

5.2.1 Diversity Extensions

Future work should explore additional notions of diversity beyond the richness constraints
discussed in this study. Potential directions include:

• Shannon Index: This measure of entropy could be used to quantify and maximize
the uncertainty or diversity within the cache, ensuring a more evenly distributed set
of pages.

• Memory Reserves: Allocating specific portions of the cache to different types of
pages could ensure balanced usage and prevent any single type from dominating the
cache space.

• Hill Numbers: A family of diversity indices that generalize richness, allowing for
different emphases on rare or common pages, could provide a more nuanced approach
to maintaining diversity.

As for the memory reserves notion, we explored some behaviors as the Caching with
Reserves [8] paper can be seen as paging with diversity constraints, and found some results
such as it also seems to be integer (unlike the Min-Max variant) and the linear program
we created by adding the restriction to our formulation seems to represent the problem. A
future work is to verify if is there some way to build an optimal algorithm similar to the one
for the richness constraints, such as it is optimal and operates under polynomial time.

5.2.2 Algorithms

Future research could focus on refining and improving the marking algorithms used for online
paging problems:

• Adaptive Marking Algorithms: Developing adaptive algorithms that can dynami-
cally adjust their marking strategies based on real-time analysis of access patterns and
cache performance.
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• Enhanced Competitiveness: Investigating techniques to enhance the competitive-
ness of marking algorithms, ensuring they perform closer to the optimal under a wider
range of scenarios.

Further work is needed to advance deterministic algorithms for both offline and online
paging problems:

• Optimal Bounds: Research could focus on tightening the lower bounds identified in
this study, pushing towards discovering the best possible deterministic algorithms.

• Scalability: Ensuring that deterministic algorithms scale efficiently with increasing
problem sizes and complexity, particularly in high-demand environments.

To provide a comprehensive analysis of paging algorithms, it is essential to dive into ran-
domized algorithms. Similar to deterministic algorithms, we need to define what constitutes
a randomized algorithm.

Definition 5.1 (Randomized algorithm) A randomized algorithm is an algorithm that incor-
porates random decisions into its execution process. This means that for a given instance, the
output can vary between different runs due to the inherent randomness in the decision-making
process.

Unlike deterministic algorithms, the behavior of a randomized algorithm is not entirely
predictable.

For the randomized case, it is not that easy to adapt Fiat’s proof [6] to this variant as
we could have more and shorter phases.

As we explored, a randomized algorithm selects the page to evict based on a random
process. This inherent randomness means that such algorithms do not guarantee the main-
tenance of diversity during each step of their execution. The lack of a systematic decision-
making process can lead to situations where the diversity of the cache is compromised, as
the eviction decisions are not explicitly guided by diversity constraints.

Mainly, we can conclude that a badly defined randomized algorithm can lead to breaking
the diversity constraints, making it useless for this purpose, so there has to be some kind of
restriction referring to the types for it to keep pages that removing would not be removed
in a feasible schedule, this makes the phases be shorter, which implies more phases and a
complicate handling of them.

The primary challenge in defining randomized algorithms for the diverse paging problem
lies in balancing randomness with diversity preservation. Here are some of the specific issues
faced:
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• Lack of Predictability: Since randomized algorithms do not follow a fixed rule, their
behavior can be unpredictable. This unpredictability makes it difficult to ensure that
diversity is maintained across different runs and instances.

• Sub-optimal diversity: Randomized decisions can lead to sub-optimal outcomes
where diversity is not preserved. For instance, consecutive random evictions might
remove a variety of page types, leading to a homogeneous cache content, which con-
tradicts the goal of maintaining diversity.

• Performance variability: The performance of randomized algorithms can vary sig-
nificantly across different instances. While they might perform well on average, certain
instances could result in poor diversity maintenance and higher page fault rates.

• Complex analysis: Analyzing the performance and guarantees of randomized algo-
rithms is more complex compared to deterministic ones. Probabilistic methods are
required to evaluate their expected behavior, which can be mathematically intensive
and less intuitive.

To address these challenges, future work could focus on developing hybrid algorithms
that incorporate both deterministic rules and randomized elements. Such hybrid approaches
could use randomness for some decisions while applying diversity-preserving heuristics for
others. Additionally, techniques such as:

• Biased Randomization: Introducing biases in the random selection process to favor
evictions that are less likely to reduce diversity.

• Randomized Rounding: Using linear programming solutions to guide the random
decisions, rounding fractional solutions in a way that maintains diversity.

• Adaptive Randomization: Adjusting the degree of randomness based on the current
state of the cache and the diversity levels, ensuring that critical diversity thresholds
are not violated.

These strategies can help in designing randomized algorithms that better balance the
need for diversity with the benefits of randomization.

The development of randomized algorithms remains a challenging yet promising area for
future research:

• Algorithm Design: Investigating new design strategies for randomized algorithms
that balance the trade-offs between performance and unpredictability.
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• Performance Guarantees: Establishing robust performance guarantees for random-
ized algorithms, providing clearer expectations for their behavior under various condi-
tions.

• Hybrid Approaches: Exploring hybrid algorithms that combine deterministic and
randomized strategies to leverage the strengths of both approaches.
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