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The auditory efferent system is a neural network that originates in the auditory cortex
and projects to the cochlear receptor through olivocochlear (OC) neurons. Medial
OC neurons make cholinergic synapses with outer hair cells (OHCs) through nicotinic
receptors constituted by α9 and α10 subunits. One of the physiological functions of
the α9 nicotinic receptor subunit (α9-nAChR) is the suppression of auditory distractors
during selective attention to visual stimuli. In a recent study we demonstrated that the
behavioral performance of alpha-9 nicotinic receptor knock-out (KO) mice is altered
during selective attention to visual stimuli with auditory distractors since they made less
correct responses and more omissions than wild type (WT) mice. As the inhibition of
the behavioral responses to irrelevant stimuli is an important mechanism of the selective
attention processes, behavioral errors are relevant measures that can reflect altered
inhibitory control. Errors produced during a cued attention task can be classified as
premature, target and perseverative errors. Perseverative responses can be considered
as an inability to inhibit the repetition of an action already planned, while premature
responses can be considered as an index of the ability to wait or retain an action. Here,
we studied premature, target and perseverative errors during a visual attention task
with auditory distractors in WT and KO mice. We found that α9-KO mice make fewer
perseverative errors with longer latencies than WT mice in the presence of auditory
distractors. In addition, although we found no significant difference in the number
of target error between genotypes, KO mice made more short-latency target errors
than WT mice during the presentation of auditory distractors. The fewer perseverative
error made by α9-KO mice could be explained by a reduced motivation for reward
and an increased impulsivity during decision making with auditory distraction in KO
mice.
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INTRODUCTION

The auditory efferent system is a neural network that comprises
descending projections from the auditory cortex to several
subcortical nuclei, including the medial geniculate body, inferior
colliculus, cochlear nucleus and superior olivary complex
(Terreros and Delano, 2015). Corticofugal projections are also
connected to the amygdala complex (Bose et al., 2010), and to the
cochlear receptor through olivocochlear (OC) neurons (Mulders
and Robertson, 2000), which are originated in the medial and
lateral region of the superior olivary complex, constituting
medial OC (MOC) and lateral OC (LOC) systems (Warr and
Guinan, 1979). MOC neurons make cholinergic synapses with
outer hair cells (OHCs) through nicotinic receptors constituted
by α9 and α10 subunits that mediate auditory efferent activity
(Elgoyhen et al., 1994, 2001, 2009). The α9 subunit of nicotinic
receptors is expressed in different parts of the nervous and
endocrine systems, including the inner ear, pituitary gland and
dorsal ganglion root neurons (McIntosh et al., 2009). This
subunit has been implicated in different physiological functions,
including auditory frequency discrimination (Clause et al., 2017),
suppression of auditory distractors during selective attention to
visual stimuli (Terreros et al., 2016), vestibular rehabilitation
(Eron et al., 2015), motion sickness and balance control (Tu
et al., 2017), stress responses (Colomer et al., 2010; Mohammadi
et al., 2017), awake/sleep cycle and circadian rhythm regulation
(Velluti et al., 1989;Madrid-López et al., 2017;Mohammadi et al.,
2017), and modulation of pain and hyperalgesia (Mohammadi
and Christie, 2014; Romero et al., 2017).

Selective attention is the capacity to focus cognitive resources
on a relevant stimulus while suppressing irrelevant stimuli. It
is proposed that selective attention activates high order cortical
regions, while filtering peripheral responses in a top-down
manner, allowing subjects to maintain goal-directed behaviors
in the presence of distractors (Fritz et al., 2007). In addition
to the behavioral response oriented to the attended stimulus,
inhibition of the behavioral responses to irrelevant stimuli is
an important mechanism of the selective attention processes
(Dalley et al., 2008). In this line the auditory efferent system,
including OC neurons are important pathways that permit
filtering of cochlear and auditory nerve responses during
selective attention to visual stimuli (Delano et al., 2007; Smith
et al., 2012).

The different behavioral errors produced during a cued
attention task can be classified as premature, target and
perseverative errors (Muir, 1996). Premature errors are
reflected by responses to cue stimulus, and could be seen
as a measure of impulsivity, while target errors (incorrect
responses) measure the decision-making process, and
perseverative errors are indicators of loss of inhibitory control.
In this sense, perseverative responses can be considered
as a possible index of compulsive action or an inability to
inhibit the repetition of an action already planned, while
premature responses can be considered as an index of
the ability to wait or retain an action (Eagle and Baunez,
2010). Moreover, error responses are used as behavioral
indicators related to attention disorders such as attention deficit

hyperactivity disorder (Malloy-Diniz et al., 2007; Eagle and
Baunez, 2010; Nandagopal et al., 2011; Lopez et al., 2015),
and other neuropsychiatric conditions related with frontal-
basal ganglia network dysregulation like Tourette syndrome,
obsessive compulsive disorder and frontotemporal dementia and
Alzheimer’s disease (Jahanshani and Rothwell, 2017). Premature
and perseverative actions are related to dysfunction of different
anatomical or neurochemical mechanisms (Evenden, 1999). For
example, premature responses with short latencies, measured
in the five-choice serial reaction time increase in rats with
infra-limbic lesions, while rats with orbitofrontal lesions produce
perseverative responses in the same behavioral paradigm
(Chudasama et al., 2003). In this line, attentional markers
respond to complex neurobiological pathways, including
prefrontal, limbic and striatal regions (Urcelay and Dalley,
2012).

Recently, we published evidence that an intact cholinergic
MOC transmission aids in ignoring auditory stimuli during
selective attention to visual stimuli (Terreros et al., 2016). In
that work, we used α9 nicotinic receptor subunit (α9-nAChR)
knock-out (KO) mice, which lack cholinergic transmission
between MOC and OHC (Vetter et al., 1999), and found that
α9-nAChR KO mice made more omissions and fewer correct
responses than wild type (WT) mice in a visual selective
attention task with auditory distractors. However, whether the
lack of α9-nACh subunit receptors produces consequences in
the neural network of behavioral errors is unknown. Here,
we studied premature, target and perseverative errors during
visual selective attention with auditory distractors in WT and
α9-nAChR KO mice. We found that α9-nAChR KO mice
make fewer perseverative errors with longer latencies than
WT mice.

MATERIALS AND METHODS

All procedures were approved by the local committee of Bioethics
(Comité de Bioética Animal permit number #0548 Facultad
de Medicina, Universidad de Chile) and were performed
in accordance with the Guidelines for the Care and Use
of Laboratory Animals (publication number 86–23, National
Institutes of Health, revised 1996). Efforts were made to
minimize the number of animals used and their suffering.

Animals
We analyzed data from the same group of animals that were used
for the work published in Terreros et al. (2016), corresponding
to 15 WT and 17 α9-nAChR KO male mice aged between
60 days and 80 days at the start of behavioral training.
Perseverative errors, total lever responses and latencies to error
responses presented in this article were not included in Terreros
et al. (2016). KO mice on the 129/SvEv backcrossed to CBA/CaJ
background (Vetter et al., 1999) and WT littermates were
generously provided by Dr. Douglas Vetter from the University
of Mississippi. Deletion of α9 nicotinic acetylcholine receptor
subunit was confirmed for each mouse by PCR screening of
genomic DNA extracted and purified from the tail. Mice were
housed in groups of two in temperature-controlled conditions
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(22◦C± 2◦C) with a 12-h dark/light cycle (lights off at 8.00 A.M)
with ad libitum access to water. They were food deprived
during the experimental period, maintaining 84%–92% of their
free-feeding weight. Detailed results from accuracy, correct
responses, and omissions during the behavioral protocol of these
mice and from auditory brainstem responses (ABR) can be found
in Terreros et al. (2016).

Training Procedures
Visual attention was assessed in a two-choice visual
discrimination task, based on that we used previously in
rats (Hamame et al., 2006, 2008), chinchillas (Delano et al.,
2007) and mice (Terreros et al., 2016). The operant mesh cage
(17 cm long, 20 cm wide and 28 cm high) was located inside a
double-walled sound-attenuating room. The front panel of the
cage had two lateral lights above two levers and a central light
(neutral cue). Each trial began with the onset of the neutral cue
for 2 s, followed by the random turn on of one of the two lateral
lights for 0.5 s. Mice were trained to press the lever located below
the target light during the response period, 5 s from the onset of
the target light. Correct responses were rewarded with a 15-mg
precision pellet (Bioservr) through a food dispenser magazine.
Lever pressing opposite to the target light during the response
period was defined as an incorrect response (target error). The
intertrial interval (ITI) period varied randomly between 5 s and
11 s. Responses to the central light (cue) were considered as
premature responses. Incorrect responses or any lever press
during the central light and ITI was punished with a 12 s period
during which all lights were turned off. If mice pressed the lever
during this punish time, the 12 s period was reinitiated and
was considered as a perseverative response. Omissions occurred
when mice did not respond to the neutral cue or target lights,
and was not punished. The behavioral variables measured were
accurate ([correct responses/(correct responses + incorrect
responses)] ∗ 100), correct responses, incorrect responses,
number of omitted trials, perseverative responses, number of
responses during the central light (premature responses) and
ITI periods. Non-target errors were considered as the sum of
premature, perseverative and ITI responses. Responses latencies:
premature response latency represents the time between the
onset of the central light and a lever pressing, incorrect response
latency represents the time between the onset of the target
light and a lever pressing opposite to it, ITI responses latency
represents the time between the end of the response period and
a lever pressing, and perseverative response latency represents
the time between the start of the punish time and a lever
pressing.

Experimental Protocol
After mice reached an accuracy of at least 70% for
three consecutive days, they were recruited in the experimental
protocol. The 12 days of experimental protocol was divided
into four periods of 3 days with 110 trials each day. In the
first 3 days (pre-distractor period, PRE), mice performed
the visual discrimination task without auditory distractors.
During days 4–6, mice did the visual discrimination task in
the presence of clicks and 15 kHz tones (C+T) as auditory

distractors and during days 7–9 in presence of broadband noise
(BBN). Finally, in the last 3 days of the experimental protocol
(days 10–12, post-distractor period, POST), mice were again
evaluated in the visual discrimination task without auditory
distractors.

Auditory Distractors
The C+T auditory distractor consisted of a click (100 µs
wide) followed by a 15 kHz tone presented in every trial
40 ms after the click at ∼67 dB SPL. BBN auditory distractors
(5–40 kHz) were presented at ∼90 dB SPL. All acoustic
stimuli were digitally generated at 100 kHz with a National
Instruments Board (PC-MIO-16E4). Tones and BBN had a
5 ms ramp (rise/fall) and a total duration of 150 ms. To
diminish habituation to auditory distractors, auditory stimuli
were delivered at irregular inter-stimulus intervals that were
centered at 400 ms (2.5 Hz rate, 1.5–3.5 Hz rate, uniformly
distributed intervals) and pseudorandomly ranged between
667 ms and 286 ms. Clicks, tones, and BBN were delivered
through a tweeter (Realistic super tweeter; Radioshack; frequency
response 5–40 kHz) located 120 cm above the floor of the
operant cage. Sound pressure calibrations inside the operant
cage were performed with a 1/2′′ Bruel and Kjaerr microphone
that revealed <10 dB of variation in different positions of the
behavioral cage.

Electrophysiological Procedures
The presence of wave I from ABR was used to obtain auditory
thresholds using ipsilateral 15 kHz tone bursts at different sound
pressure levels (from 0 dB to 90 dB SPL). ABR thresholds were
defined as the lowest tone intensity (dB SPL) that evoked an
averaged response evaluated by visual inspection of wave I by an
expert observer. In addition, the amplitudes and latencies of ABR
waves (I-V) in response to 15 kHz tones at 80 dB were measured
in both genotypes.

Statistical Analyses
Behavioral data were analyzed by two-way repeated-measures
analysis of variance (RM-ANOVA) and were followed
by Bonferroni post hoc comparison tests. Non-normal
distributed data were transformed to [Log (X + 1)] to
satisfy requirements of the ANOVA model. Difference in
the distribution of behavioral latencies was evaluated by
Kolmogorov-Smirnov test. Differences in ABR amplitudes,
latencies and thresholds were evaluated by t-tests. Significant
differences were considered for statistical tests with
p-value <0.05.

RESULTS

The number and mean latencies of incorrect and non-target
error responses (premature, perseverative and ITI responses)
in WT and KO mice were compared during the four periods
of the experimental protocol (PRE, C+T, BBN and POST).
Figure 1 shows that there were no differences in the number
of incorrect responses between WT and KO mice, while a
significant difference was found in non-target error responses
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FIGURE 1 | Difference in the number of non-target errors between wild type (WT) and knock-out (KO) mice during the C+T period. Incorrect and non-target
responses are shown in red and green bars (mean ± SEM) for WT and KO mice correspondingly. (A) Number of incorrect responses. (B) Number of non-target
errors. ∗p < 0.05.

(two way RM-ANOVA, F(1,3) = 12.374, p < 0.001). Bonferroni
post hoc tests showed that during the C+T period KO mice had
significantly fewer non-target error responses (t = 2.302, p< 0.05;
WT = 55.689 ± 29.517 (mean ± SD), KO = 38.371 ± 21.841).
As non-target error responses considered the sum of premature,
perseverative and ITI responses, we separated behavioral
data into these three possible error responses. Figure 2
shows that there was a significant difference in perseverative
responses (Two way RM-ANOVA, F(1,3) = 10.683, p < 0.001;
WT = 40.867 ± 24.475, KO = 25.627 ± 16.701) during the
C+T period between WT and KO mice by a Bonferroni post hoc
test (t = 2.588, p < 0.05), while non-significant differences
were found in ITI and premature responses between both
genotypes.

Next, we compared the latency of all error responses,
including incorrect, premature, perseverative and ITI responses.
Figure 3 shows significant differences in the latencies of
perseverative responses (Two-way RM-ANOVA, F(1,3) = 2.850,

p < 0.05) between WT and KO. Bonferroni post hoc tests
show significant decreases in the mean latency of perseverative
responses in WT mice during C+T (t = 2.834, p < 0.01;
WT = 1.300 ± 0.378 s, KO = 1.965 ± 0.891 s) and BBN
periods (t = 2.374, p < 0.05; WT = 1.352 ± 0.483 s,
KO = 1.908± 0.750 s). No differences were found in the latencies
of incorrect, premature and ITI responses.

In addition, we analyzed the distribution of error latencies
between WT and KO mice in the four experimental periods.
Distributions of premature and ITI responses were similar
between genotypes in the four experimental periods. Figure 4
shows the presence of two latency peaks of incorrect responses
in the four periods in both genotypes, the first peak is around
500 ms, while the second is near 1500 ms. We found a significant
increase of the first latency peak of incorrect responses in KO
mice compared to WT mice during the presence of auditory
distractors (C+T and BBN periods; Kolmogorov-Smirnov test
(C+T, D = 0.093, p < 0.05; BBN, D = 0.119, p < 0.01). Regarding

FIGURE 2 | Difference in the number of perseverative responses between WT and KO mice during the C+T period. The different behavioral measures in the four
periods of the experimental protocol are shown in red and green bars (mean ± SEM) for WT and KO mice correspondingly. (A) Number of perseverative responses.
(B) Number of intertrial interval (ITI) responses. (C) Number of premature responses. ∗p < 0.05.
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FIGURE 3 | Differences in the mean latency of perseverative responses between WT and KO mice during C+T and broadband noise (BBN) periods. The latencies of
error responses in the four periods of the behavioral protocol are shown in red and green bars (mean ± SEM) for WT and KO mice correspondingly. (A) Mean
latencies of incorrect responses. (B) Mean latencies of perseverative responses. (C) Mean latencies of ITI responses. (D) Mean latencies of premature responses.
∗p < 0.05.

perseverative responses, there were significant differences in the
latency distribution between genotypes during the four periods
(PRE, D = 0.092, p < 0.005; C+T, D = 0.124, p < 0.005; BBN,
D = 0.070, p < 0.005; POST, D = 0.126, p < 0.005), showing a
decrease in the latency peak of perseverative responses in WT
mice.

Next, as in the present study we found that in the presence
of auditory distractorsWTmice made more perseverative errors,
and in our previous work we showed that WT mice made more
correct responses and less omissions than KO mice (Terreros
et al., 2016), we compared the total number of lever presses
between genotypes in the four experimental periods. Figure 5
shows a significant difference in the total number of lever presses
between both genotypes (Two-way RM-ANOVA, F(1,3) = 10.143,
p < 0.001) during PRE (Bonferroni post hoc, t = 2.170,
p < 0.05; WT = 127.333 ± 32.571, KO = 106.294 ± 28.282)
and C+T periods (t = 3.260, p < 0.05; WT = 140.378 ± 30.529,
KO = 108.765± 28.123), showing thatWTmicemademore lever
presses than KO mice.

Finally, as previous evidence in α9-KO mice showed an
altered development of the responses of brainstem auditory

neurons (Clause et al., 2014); we analyzed ABR at thresholds
and supra-thresholds levels in both genotypes. We found
non-significant differences in wave I thresholds between
genotypes (WT = 31.0 ± 4.7 dB; KO = 31.9 ± 4.4 dB,
t-test), and non-significant differences in the supra-thresholds
amplitudes of wave I and V (wave I: WT = 0.46 ± 0.12 µV,
KO = 0.49 ± 0.10 µV; wave V: WT = 0.50 ± 0.12 µV,
KO = 0.52 ± 0.11 µV, t-tests). Regarding ABR latencies, there
were no genotype differences in waves I, II and III (wave
I(WT) = 1.76 ± 0.45 ms; wave I(KO) = 1.80 ± 0.37 ms; wave
II(WT) = 3.44 ± 0.33 ms; wave II(KO) = 3.44 ± 0.36; wave
III(WT) = 4.60 ± 0.31 ms; wave III(KO) = 4.61 ± 0.33), while we
found a significant difference between genotypes in the latency
of wave V (WT = 6.60 ± 0.37 ms; KO = 6.88 ± 0.33 ms, t-test
p < 0.05).

DISCUSSION

We show that WT mice made more perseverative errors with
shorter latencies than α9-nAChR KO mice during selective
attention to visual stimuli with auditory distractors. In addition,
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FIGURE 4 | Differential distribution of incorrect responses latencies between WT and KO mice during C+T and BBN periods. Density of incorrect responses latencies
in the four periods of the behavioral protocol are shown in red and green lines for WT and KO mice correspondingly. Notice the presence of two peaks, around
500 ms and 1500 ms in the four periods. KO mice increase the amplitude of the first peak of incorrect responses with auditory distractors (C+T and BBN periods).
(A) Pre-distractor period. (B) C+T period. (C) BBN period. (D) Post-distractor period. Kolmogorov-Smirnov test, ∗p < 0.05.

while we found no significant difference in the number of
incorrect responses between genotypes, KO mice increased
the frequency of short-latency incorrect responses during
the presentation of the click and tone distractors. These
behavioral differences should be taken together with our previous
results of the same group of mice (Terreros et al., 2016), in
which KO mice omitted more trials and made fewer correct
responses than WT mice in the presence of click and tone
distractors.

FIGURE 5 | Differences in the total number of lever presses between WT and
KO mice during PRE and C+T periods. The number of total lever presses in
the four periods of the behavioral protocol are shown in red and green bars
(mean ± SEM) for WT and KO mice correspondingly. ∗p < 0.05.

Difference in the Distribution of Incorrect
Responses with Auditory Distractors
Although, there were no differences in the number of incorrect
responses with auditory distractors between genotypes, we
found a differential distribution of incorrect responses during
the presentation of auditory distractors, reflected by the
increase of the short-latency peak of incorrect responses in
KO mice (around 500 ms). The significant increase of early
incorrect responses could be indicative of more impulsive
decision in KO mice induced by auditory distraction in
a visual selective attention task. Auditory-cortex descending
pathways can be though as a neural circuit that allows
top-down filtering of afferent auditory responses (Xiao and
Suga, 2002; León et al., 2012; Aedo et al., 2016). In that
line, we propose that the increased auditory distraction
in KO mice could be consequence of the lack of OHC
inhibition by MOC synapses in the KO mice. This might
impair the filtering of auditory distractors by the corticofugal
projections from the auditory cortex that modulate MOC
neurons (Dragicevic et al., 2015; Aedo et al., 2016). Importantly,
auditory thresholds and supra-thresholds ABR amplitudes
were similar for WT and KO mice, and only a significant
difference in the latency of wave V was obtained. With
these results, we suggest that afferent responses to auditory
distractors were relatively similar in both genotypes, and
that the lack of top-down filtering of irrelevant auditory
distractors in KO mice might be the principal contributor
to impulsive behaviors during decision making with auditory
distractors.
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Difference in Perseverative Errors
WT mice made more perseverative errors with shorter latencies
than KO mice during visual selective attention with auditory
distractors. These unexpected results are probably not related to
the lack of functional MOC synapses in the cochlear receptor of
KOmice, and could be attributed to the expression of α9-nAChR
in tissues different than the inner ear. In the nervous system,
besides cochlear hair cells (Elgoyhen et al., 1994), the α9 subunit
of the nicotinic receptor has been found in vestibular hair
cells (Hiel et al., 1996; Luo et al., 1998), dorsal root ganglia
(Lips et al., 2002), and retina (Smith et al., 2014), while in the
endocrine system has been detected in the pituitary and adrenal
glands (Elgoyhen et al., 1994; Colomer et al., 2010). Colomer
et al. (2010) found that α9-nACh receptors are upregulated
in response to cold stressors, while Mohammadi et al. (2017)
evidenced that α9-nAChR KO mice have dysregulated stress
responses, increasing plasma corticosterone levels in α9-nAChR
KO compared to WT. In line with this explanation, our results
could be related to the effects of stress hormones on the medial
prefrontal cortex (mPFC). Therefore, it is possible that training in
the attentional task was a chronic mild stress for the α9-nAChR
KO mice. In this context, chronic stress alters mice mPFC, a
brain area involved on inhibitory control (Gilabert-Juan et al.,
2013; Agoglia et al., 2017). Together, these findings suggest that
in our experiments training stress might have deteriorated the
mPFC of the α9-nAChR KO. Moreover, this idea is supported
by a recent work showing the expression of alpha-9 nicotinic
receptors in the frontal cortex, basal ganglia and thalamus of
mice that might explain the difference in perseverative errors
observed in KO mice (Lykhmus et al., 2017). The presence
of alpha-9 receptors in these brain regions could also affect
the neural circuits of motivation and reward, explaining fewer
perseverative errors and fewer total lever responses observed
in the α9-nAChR KO mice. Mohammadi et al. (2017) showed
that α9-nAChR KO mice displayed an anhedonia-like behavior
in a sucrose preference test, while WT mice continued to seek
for reward. The higher number of perseverative errors that we
found in the WT mice could be related with the instrumental
learning paradigm used in our study, which is solely based on a
reward outcome, without any aversive punishment. These types
of paradigms produce a robust ‘‘action’’ or ‘‘go for reward’’
response in normal subjects (Guitart-Masip et al., 2012). In this
line, the motivation to seek for a reward could also explain
the significantly larger amount of total lever presses observed
in the WT in comparison with the KO mice in the first two
periods (PRE and C+T) of the experimental protocol (Figure 5).

A reduced motivation in α9-nAChR KO mice is also supported
by our previous work (Terreros et al., 2016), in which we found
that WTmice made more correct responses and fewer omissions
than KOmice without changes in locomotor activity as measured
through open field test. In this line, correct responses and
perseverative errors could be indicative of a motivated behavior,
in which WT mice are seeking for reward, and consequently,
considering that both genotypes had a similar level of food
deprivation (no weight differences), fewer total lever responses
in KO mice could reflect less motivation (Jones et al., 2017).
In complement with the previous idea, at the 4th day of the
experimental protocol when mice have completed their learning
phase, they probably have changed their responses from an
‘‘action-outcome learning’’ to a ‘‘stimulus response learning’’
(Yin and Knowlton, 2006). In the latter type of behavior is
frequent to see generalization of responses (go) with different
stimulus, presuming that the WT generalizes the response from
a visual to an auditory trigger (Jones et al., 2017), this hypothesis
could explain why these types of errors are overexpressed in the
C+T period.

CONCLUSION

Here we demonstrated that perseverative errors are diminished
in α9-nAChR KO mice compared to WT mice during visual
selective attention with auditory distractors, suggesting a reduced
motivation for reward in KO mice. In addition, we found that
in the presence of auditory distractors, the early latency peak
of incorrect responses is increased in α9-nAChR KO mice,
suggesting that the lack of MOC function increases impulsivity
during decision making with auditory distraction.
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